Acoustic Source Localisation in Constrained Environments

Elizabeth Vargas

Overview

What is Acoustic Source Localisation?

Answer **where** is sound coming from

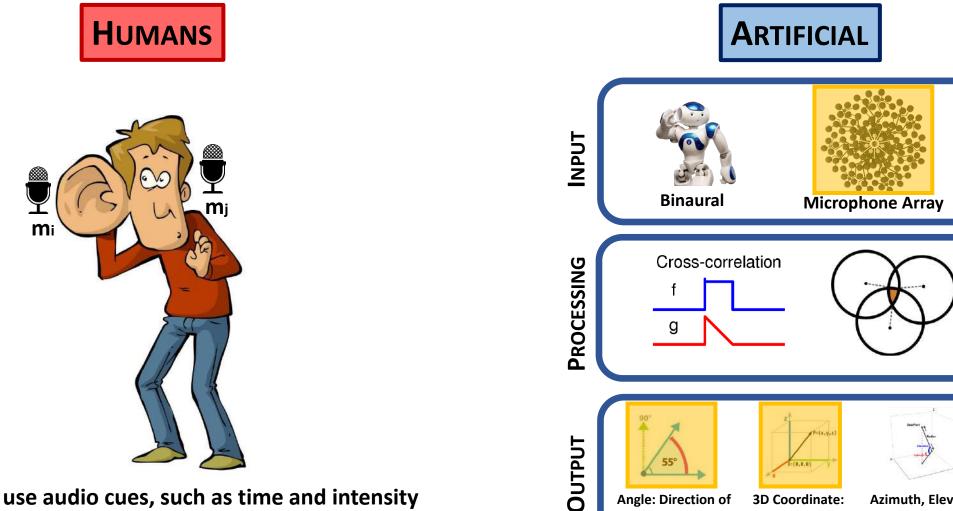
3D Coordinate:

Exact location

Angle: Direction of Arrival (DOA)

Azimuth, Elevation

and Range



We use audio cues, such as time and intensity differences between both ears.

Application Scenarios

Rescue drones

Speech

Robot waitress

Constrained Environments

Atypical scenarios, in which the conditions to solve ASL are restricted, and therefore conventional methods do not work.

Number and configuration of microphones (CHAPTER 4)

- Limited number of microphones available
- TDOA available for some microphone pairs.
- Microphone arrangement

Signal samples (CHAPTER 5)

- The use of the full length of an acoustic signal is unavailable
- Limited communication
 - Low bandwidth

Data available for training (CHAPTER 6)

- Machine/deep learning approaches
- Insufficient training data
- Test data differs from training data

Hypothesis

It is possible to accurately localise sound sources, even in constrained scenarios.

Publications

- E. Vargas, K. Brown, K. Subr, "Impact of Microphone Array Configurations on Robust Indirect 3D Acoustic Source Localization", in International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Canada, April 2018. (Oral Presentation)
- E. Vargas, J. R. Hopgood, K. Brown, K. Subr, "A Compressed Encoding Scheme for Approximate TDOA Estimation", in *European Signal Processing Conference*, (EUSIPCO), Rome, Italy, September 2018. (Oral Presentation)

Contributions

This thesis presented work on Acoustic Source Localisation (ASL) in constrained environments. The three constraints studied were the number and configuration of sensors; the signal samples; and training data.

Number and configuration of microphones (CHAPTER 4)

- Limited number of microphones available
- TDOA from some microphone pairs
- Microphone arrangement

Signal samples (CHAPTER 5)

- The use of the full length of an acoustic signal is unavailable
- Limited communication
- Low bandwidth

Data available for training (CHAPTER 6)

- Machine/deep learning approaches
- Insufficient training data
- Test data differs from training data

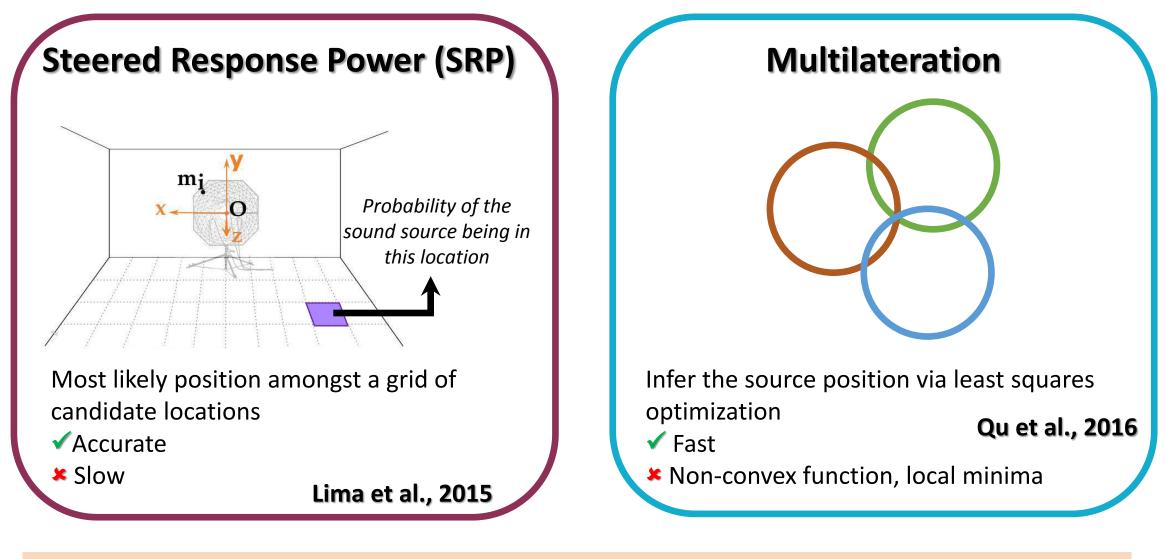
Accuracy can be maintained at state-of-the-art levels (SRP) while reducing computation six fold, while circular arrays leads to highest errors. The algorithm presented in this work outperforms an audio fingerprinting baseline while maintaining a **compression ratio of 40:1**. Music training data is used to record an **improvement** of 19% against a noise training baseline using only 25% of the training data.

CONTRIBUTIONS

CONTRIBUTION I Number and Configuration of Microphones (CHAPTER 4)

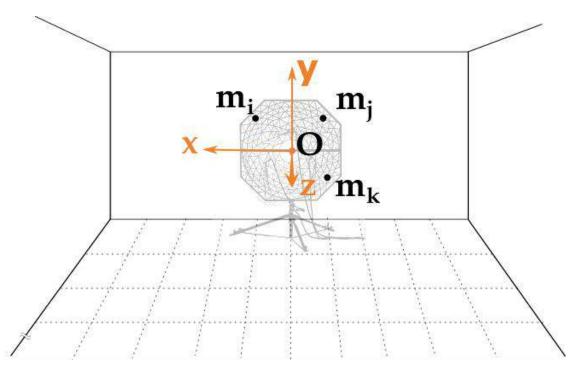
E. Vargas, K. Brown, K. Subr, "Impact of Microphone Array Configurations on Robust Indirect 3D Acoustic Source Localization", in *International Conference on Acoustics, Speech and Signal Processing* (ICASSP), Calgary, Canada, April 2018. (Oral Presentation)

Locating The Source In 3D

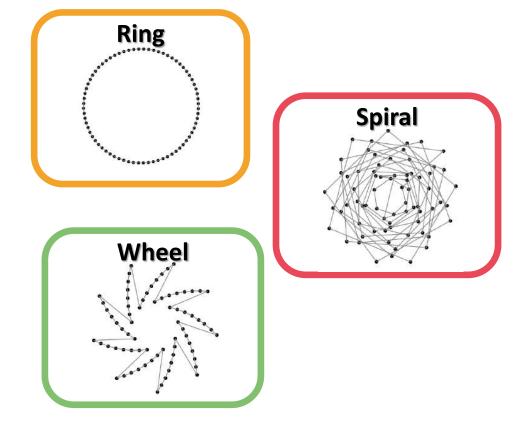


PROBLEM 1: Localisation needs to be accurate and fast at the same time

Experimental Set Up



- 72 microphones
- Sampled at 192 kHz



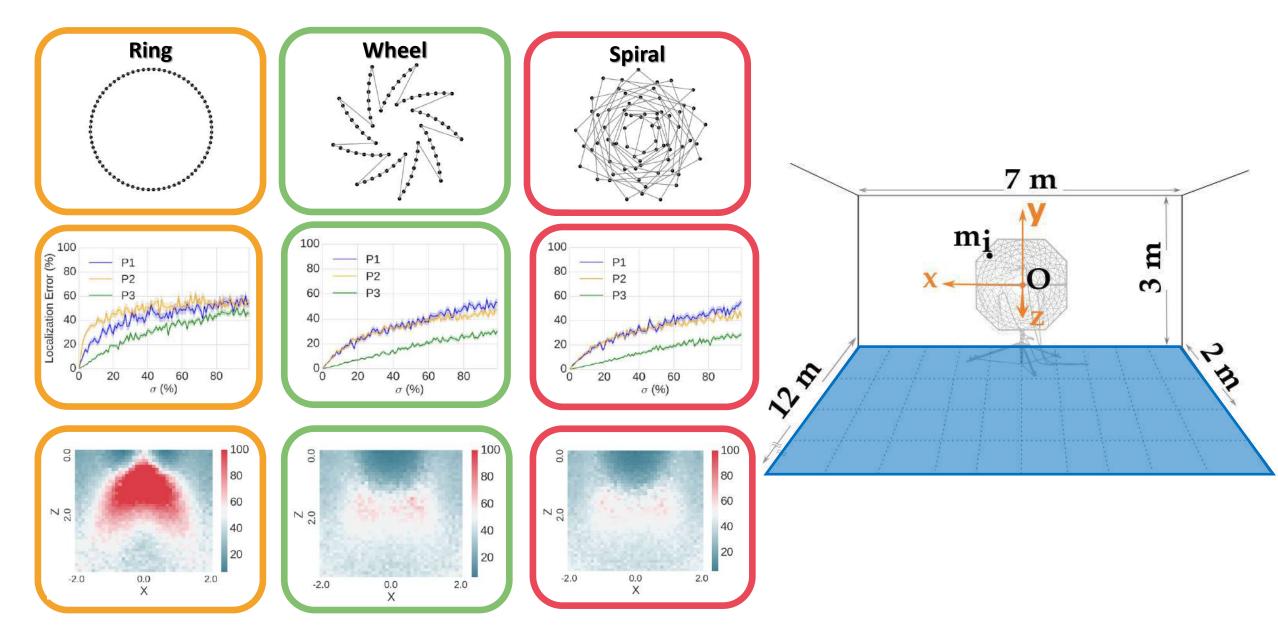
• Three configurations spanning the same area

PROBLEM 2: Which configuration to use in order to obtain the most accurate localisation?

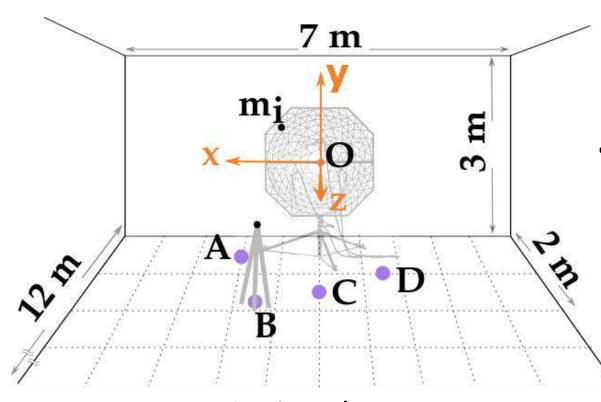
Hypothesis I

Using one particular **microphone configuration** over another could bring **more accuracy** to the estimation of sound source localisation. Moreover, **multilateration could be fast and reliable** when used in combination with the right amount of microphone pairs.

Simulated Room Impulse Response (RIR)

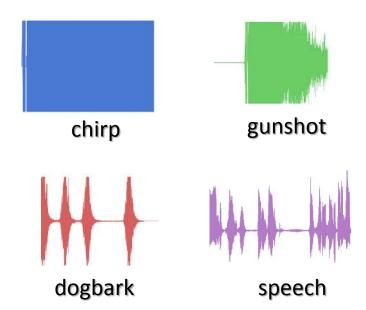


Using Real Data



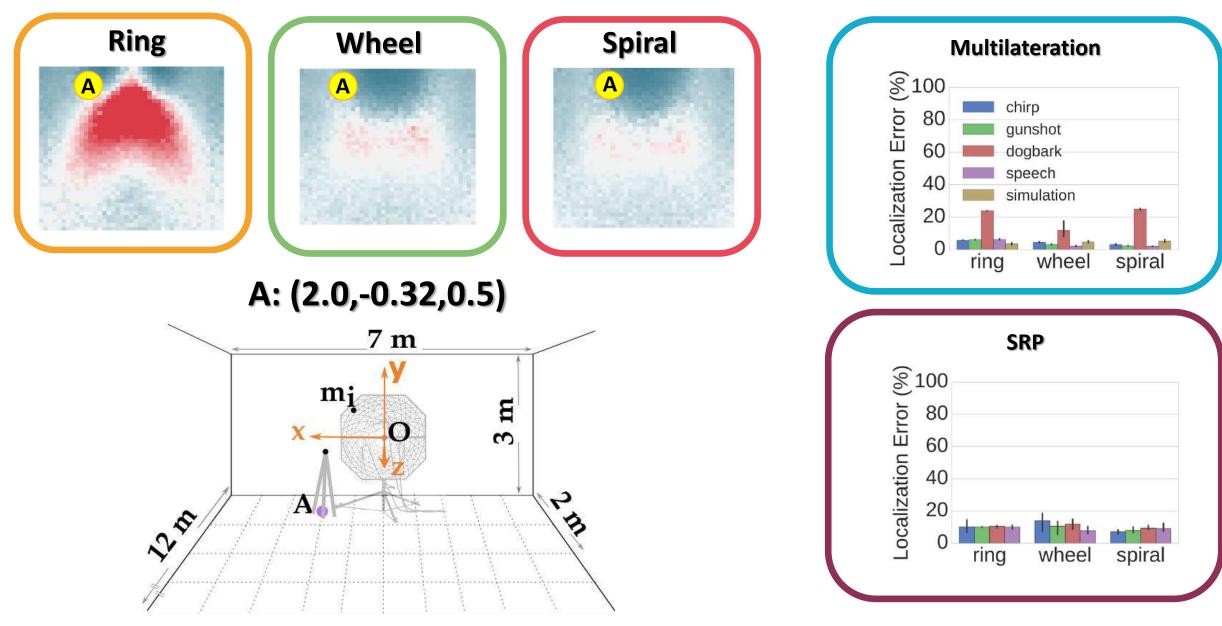
- **72** microphones
- Sampled at 192 kHz

• Three configurations spanning the same area

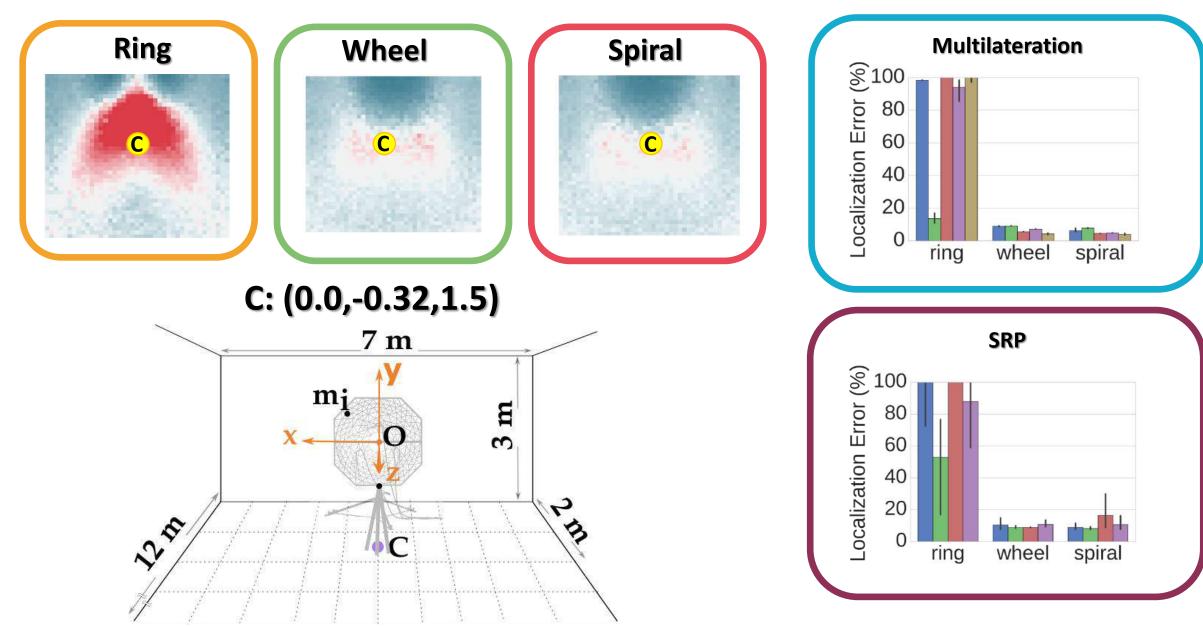


• Four different signals

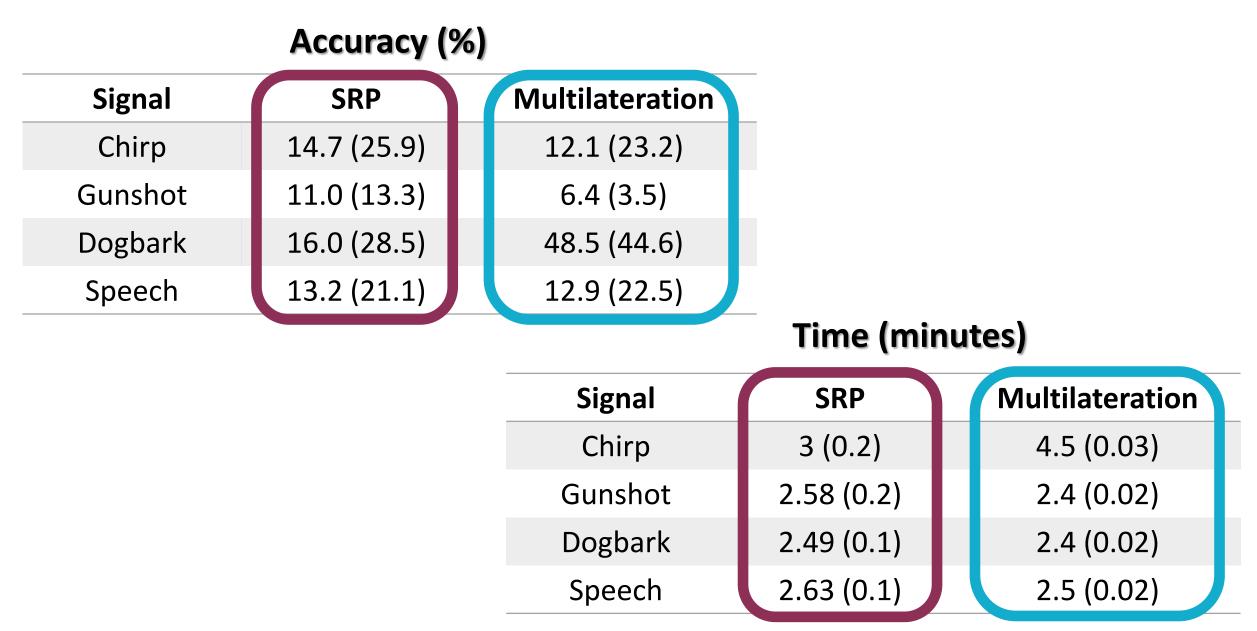
Short Range Localisation



Facing The Microphone Array



Using 2556 Microphone Pairs



Using 100 Microphone Pairs

Accuracy (%)

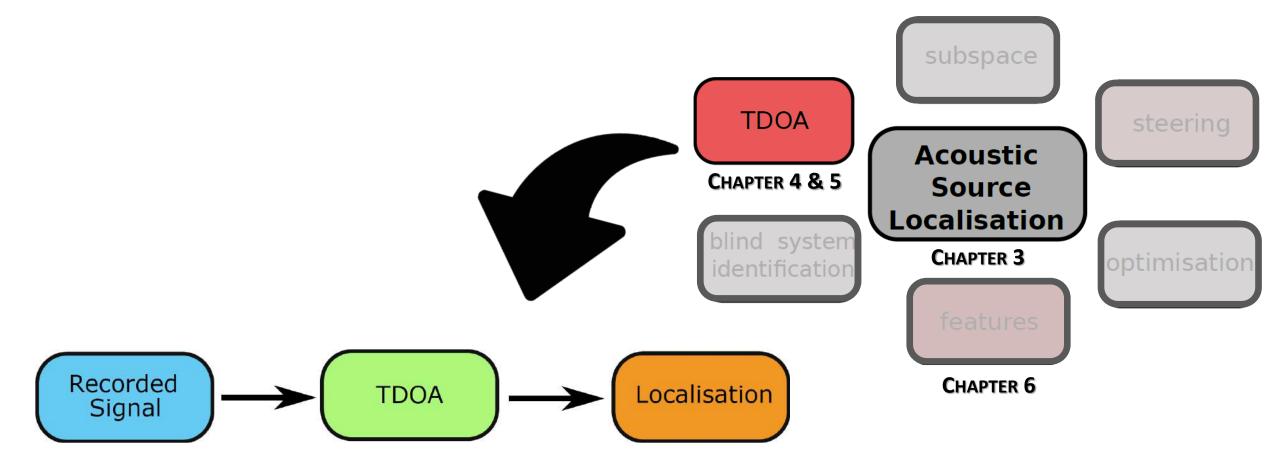
Signal	SRP		Multilateration			
Chirp	14.7 (25.9)		14.2 (25.9)			
Gunshot	11.0 (13.3)		9.6 (12.8)			
Dogbark	16.0 (28.5)		58.9 (38.8)			
Speech	13.2 (21.1)		15.2 (23.5)			
	Time (minutes)					
			Signal	SRP		Multilateration
			Chirp	3 (0.2)		0.5(0.01)
6 TIMES FASTER		Gunshot	2.58 (0.2)		0.4 (0.02)	
			Dogbark	2.49 (0.1)		0.4 (0.02)
			Speech	2.63 (0.1)		0.4 (0.02)

Summary of Contributions

- Multilateration produces localisation errors comparable to the state of the art, Steered Response Power (SRP), with 6 times less computation.
- 2. Circular arrays lead to higher localisation error than spiral and wheel configurations.
- 3. We confirmed our hypothesis in simulated and real scenarios.

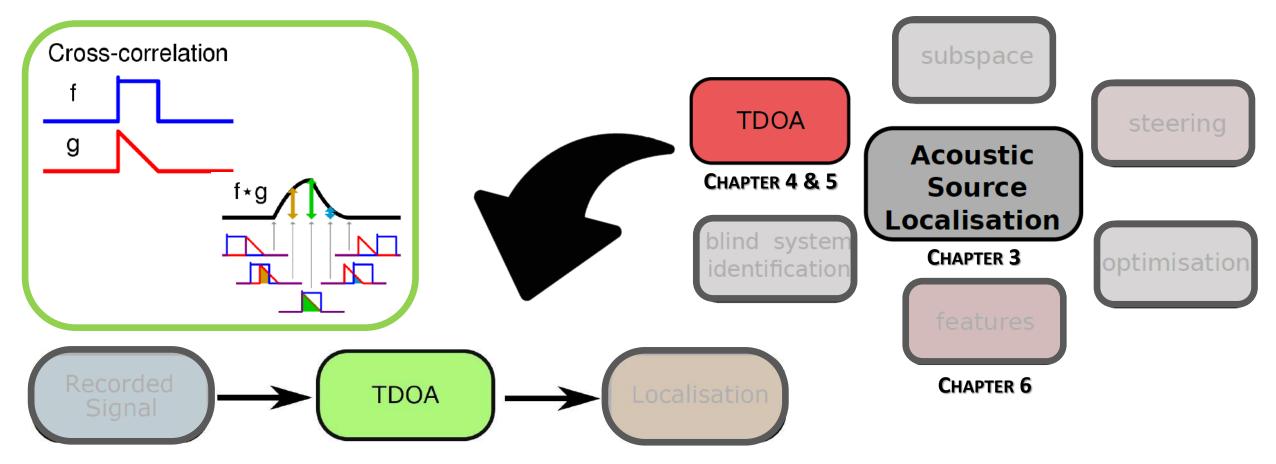
CONTRIBUTION II Signal Samples (CHAPTER 5)

E. Vargas, J. R. Hopgood, K. Brown, K. Subr, "A Compressed Encoding Scheme for Approximate TDOA Estimation", in *European Signal Processing Conference*, **(EUSIPCO)**, Rome, Italy, September 2018. **(Oral Presentation)**

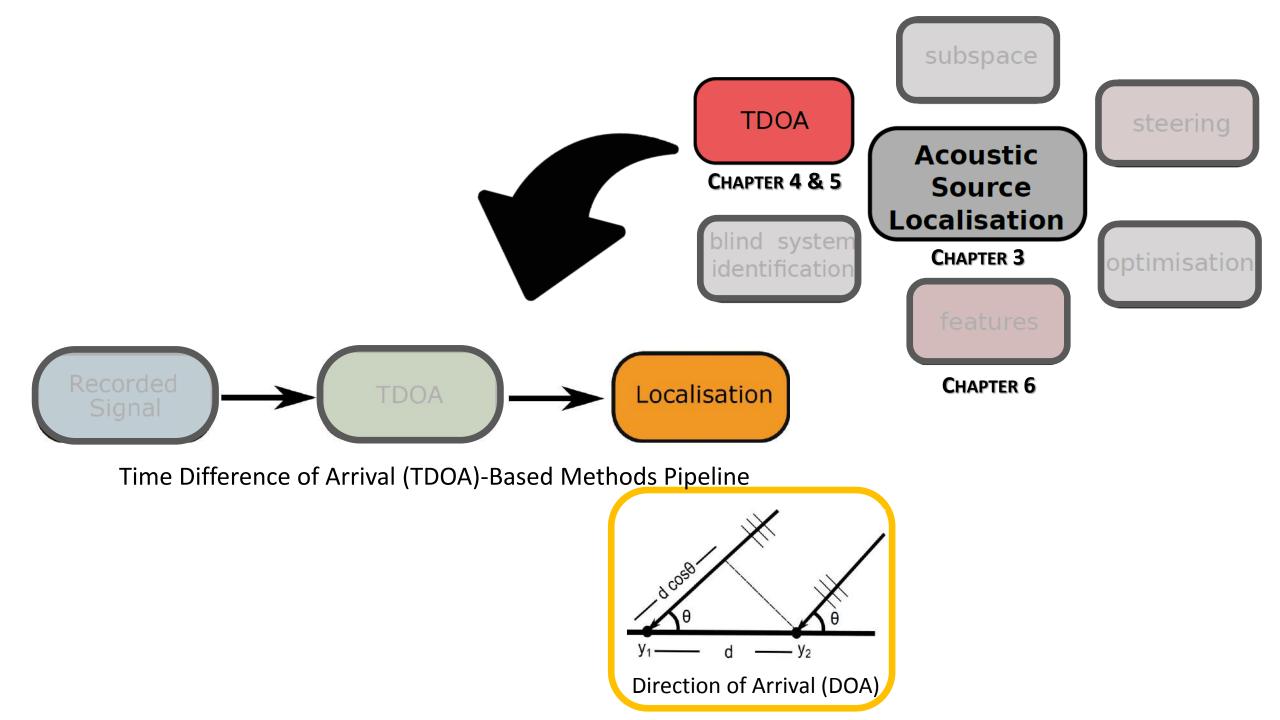


Time Difference of Arrival (TDOA)-Based Methods Pipeline

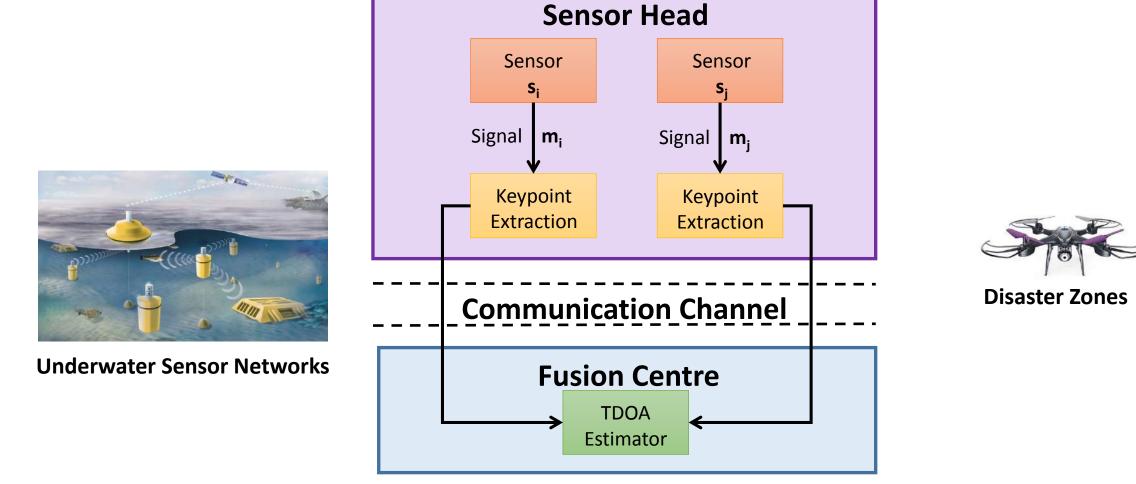
The main idea is to estimate the time delay of the signal between microphone pair(s) *(very similar to human auditory system)*



Time Difference of Arrival (TDOA)-Based Methods Pipeline



Experimental Set Up

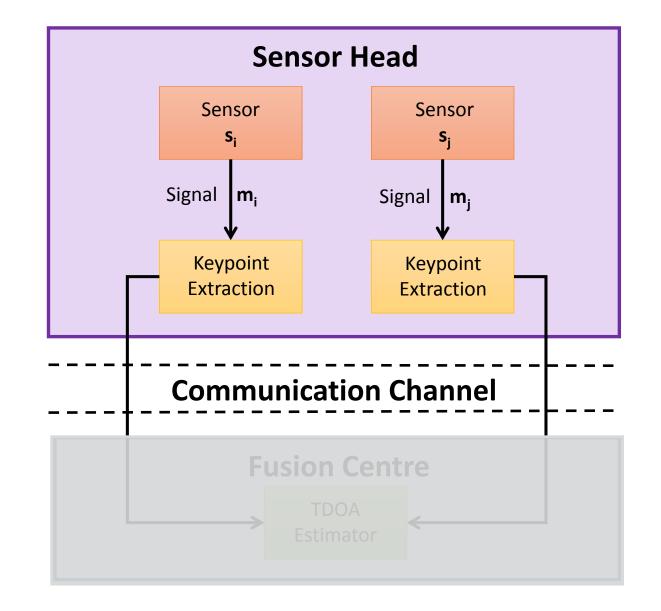


PROBLEM: There are limitations in the amount of data that could be transmitted through the communication channel.

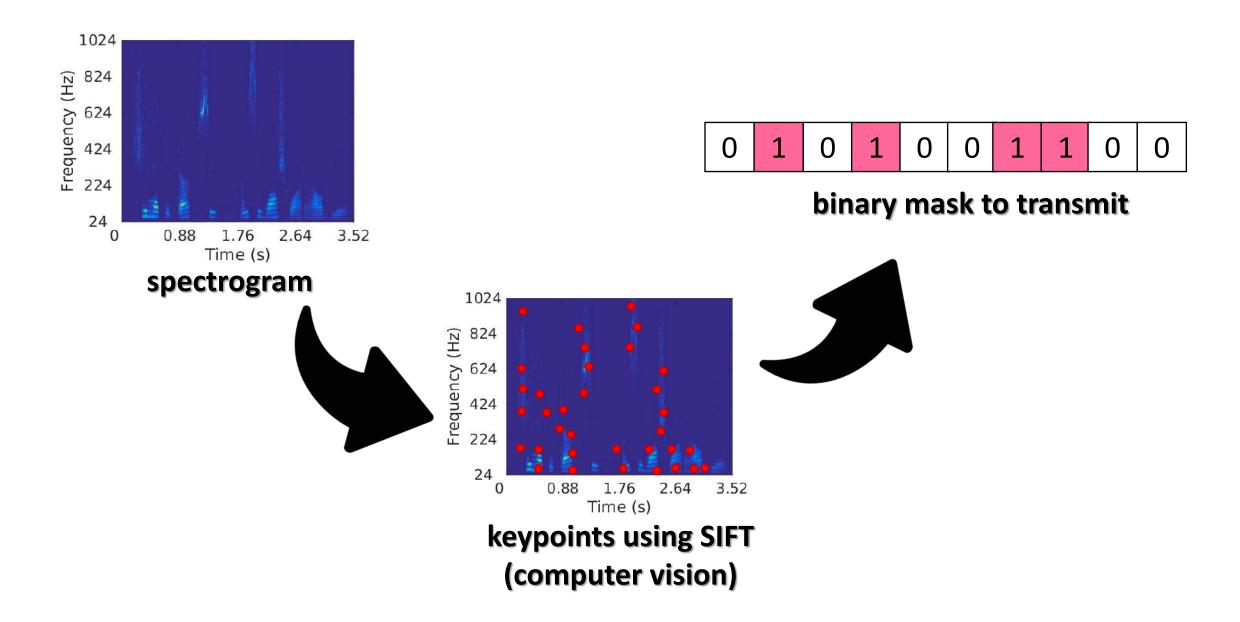
HYPOTHESIS II

It is **not necessary** to use the entire signal to accurately estimate TDOA.

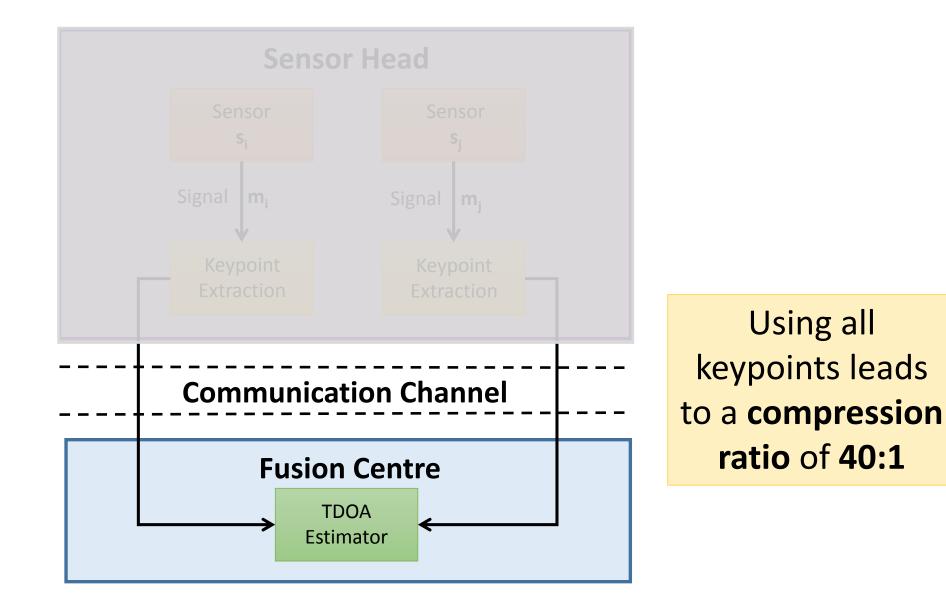
Constraint Transmission



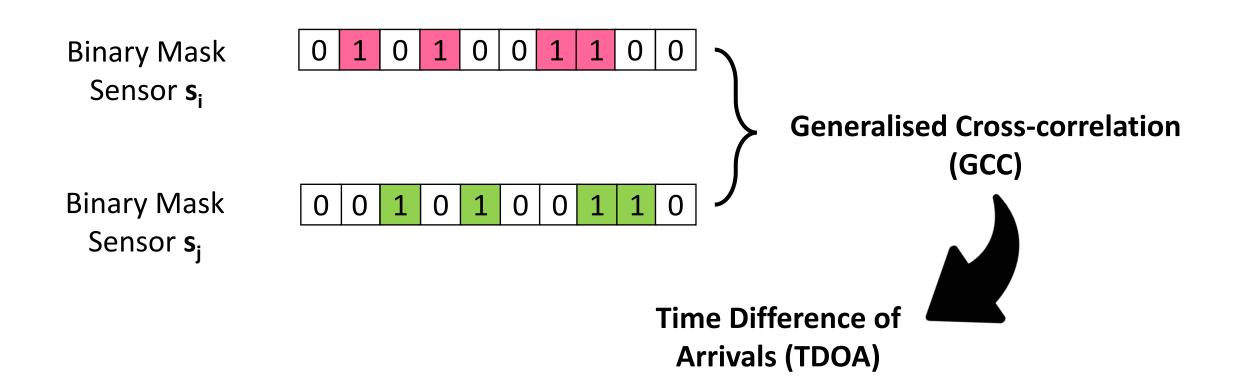
Proposed Method



Constraint Transmission

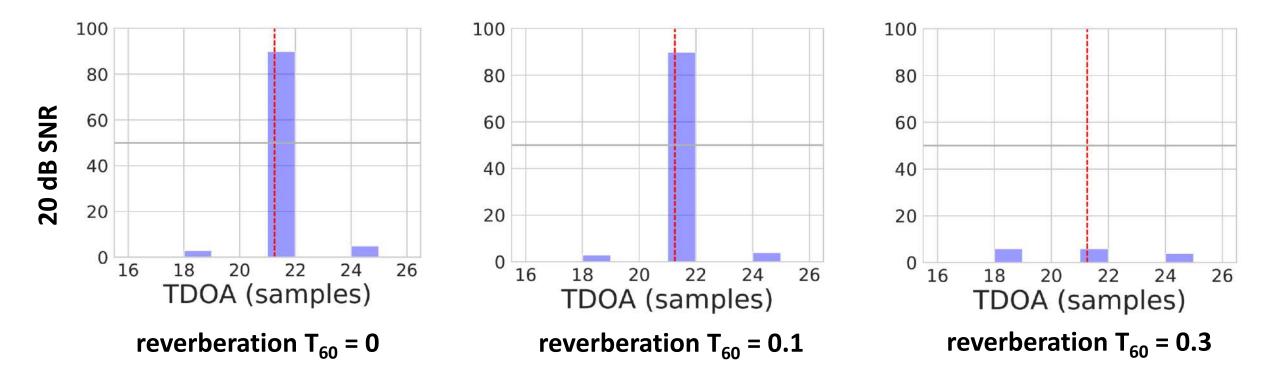


Proposed Method



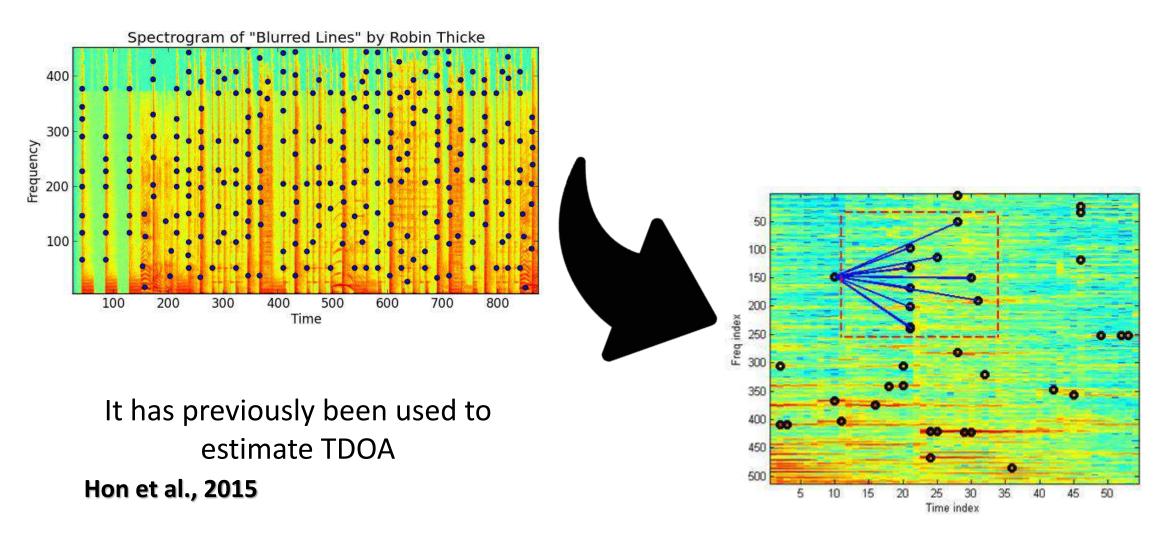
Initial Validation

100 monte carlo simulations for a fixed microphone pair and source location (x = 2, y = 1, z = 5)

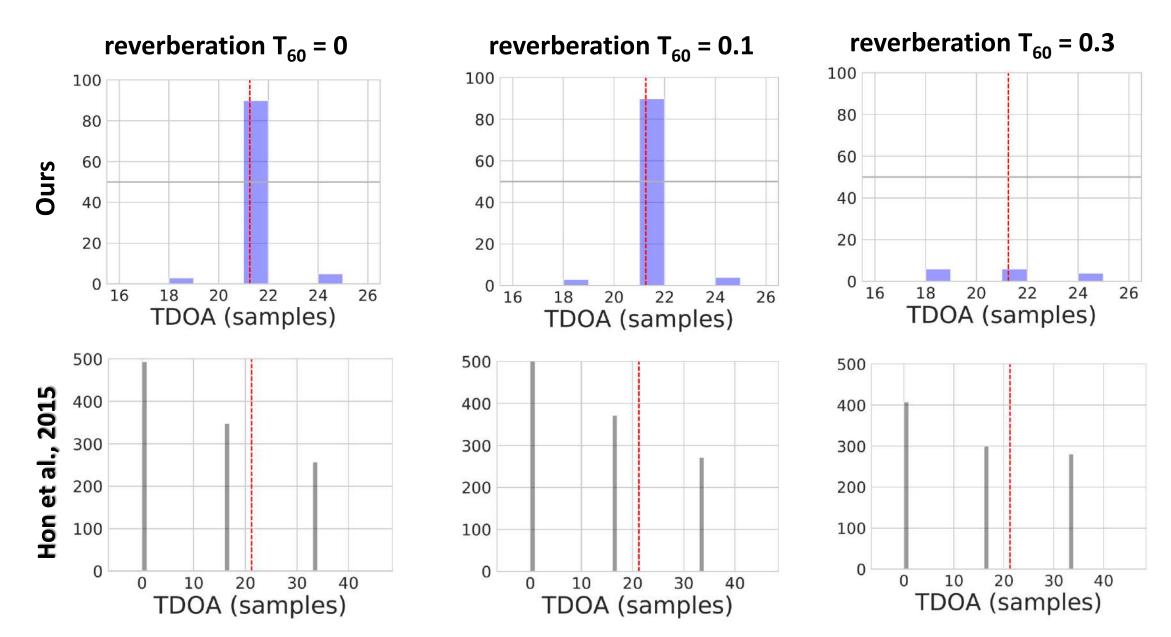


Baseline: Fingerprinting

Information retrieval algorithm used mostly for song matching



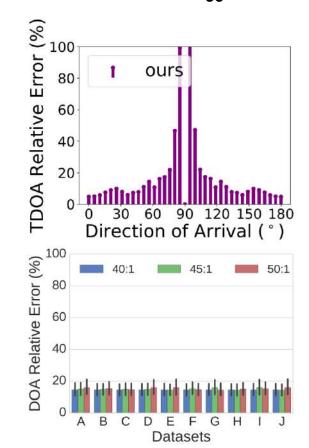
Fingerprinting vs Ours



Results: 10 Different Speech Signals

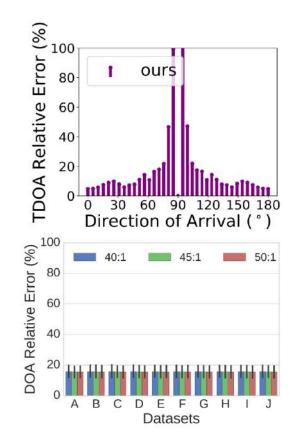
Variations of signals, reverberation, Direction of Arrival (DOA) and compression ratio

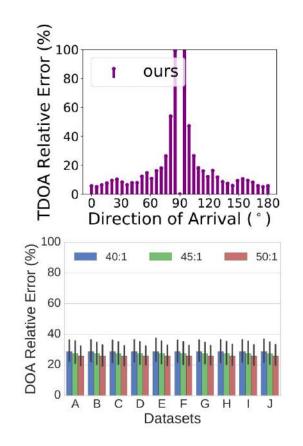
reverberation $T_{60} = 0.1$



reverberation $T_{60} = 0.2$

reverberation $T_{60} = 0.3$

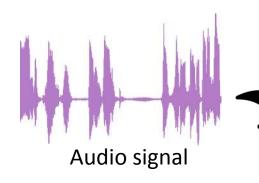


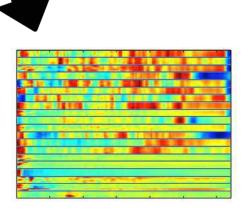


Summary of Contributions

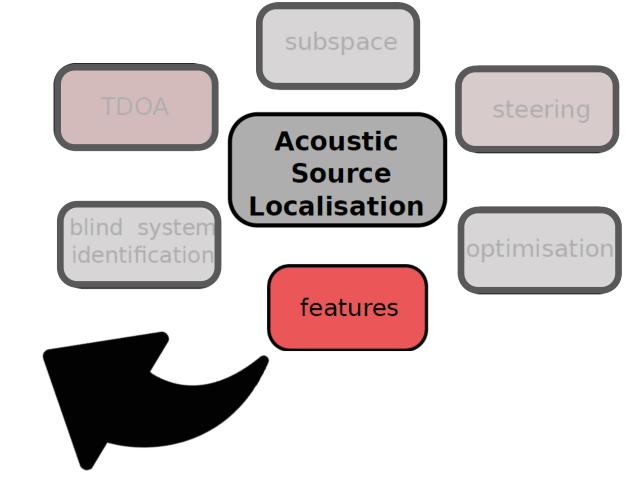
- 1. Signal samples could be selected in order to accurately estimate TDOA/DOA, without using the entire signal.
- 2. Computer vision techniques **(SIFT)** applied on the signal spectrogram are useful for selecting samples.
- 3. The proposed algorithm achieves a **compression ratio** of **40:1**
- 4. The algorithm outperforms the baseline, audio *fingerprinting*.
- 5. The proposed method is suitable for speech signals.

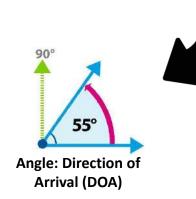
CONTRIBUTION III Data Available for Training (CHAPTER 6)

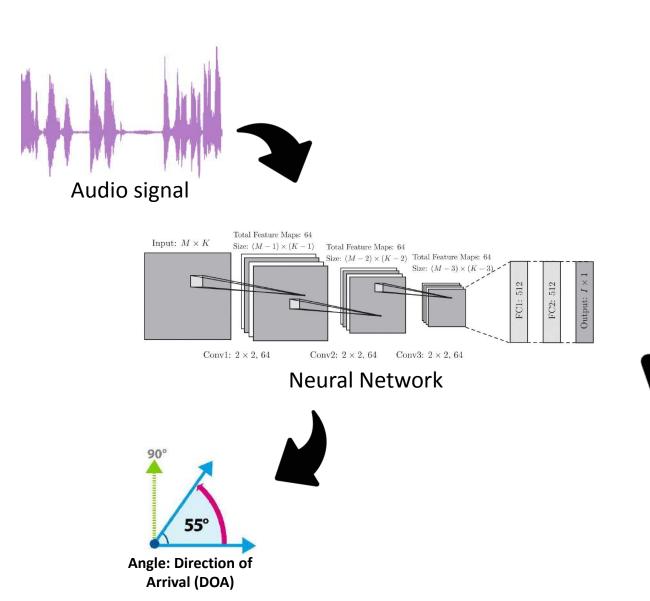




Feature extraction/matching



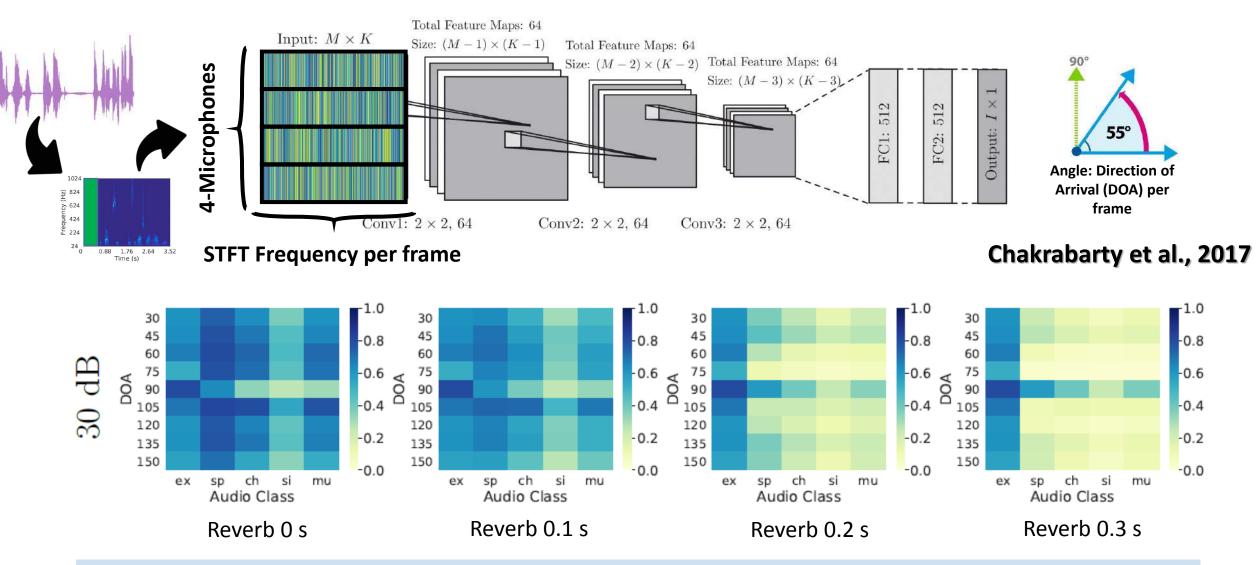




TDOA Acoustic Source Localisation features tering

subspace

Baseline: Train with noise, test with speech

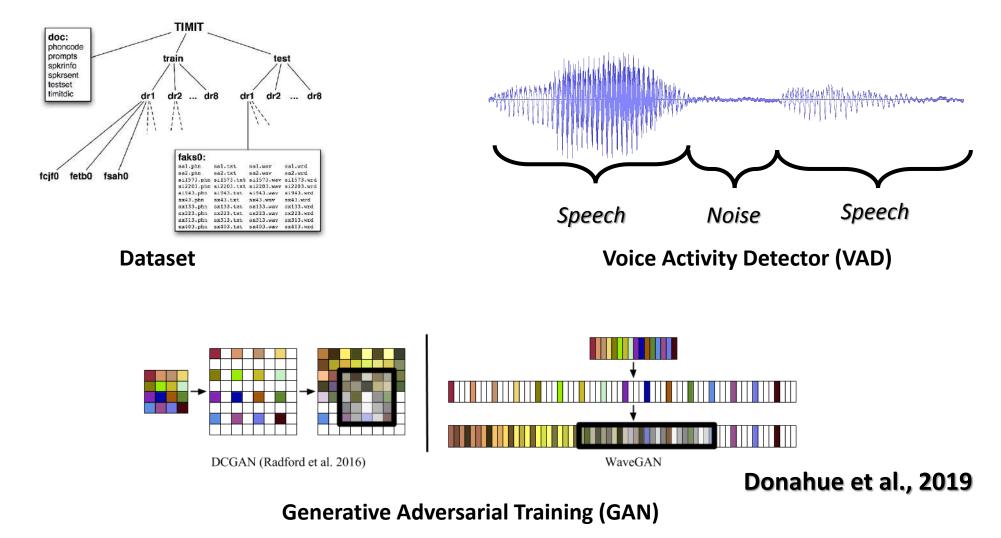


PROBLEM: We want to be able to obtain accurate DOA for all audio classes

HYPOTHESIS III

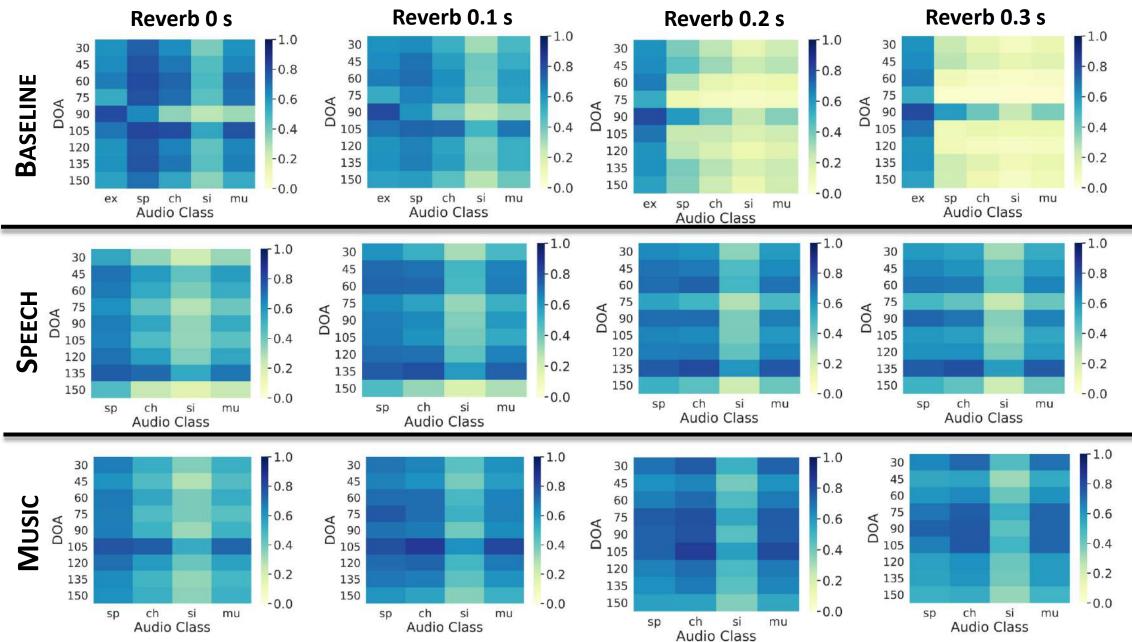
Using **speech** and **music** data for training will provide **more accurate DOA estimation** than using noise, as in the state of the art.

Variations of Speech and Music

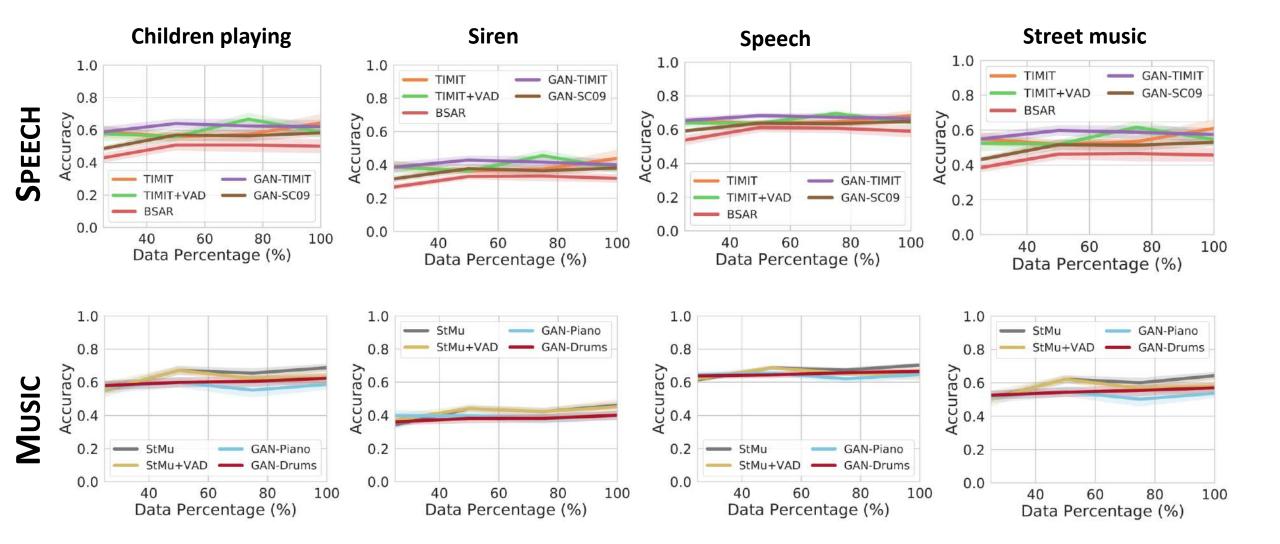


https://chrisdonahue.com/wavegan_examples/

Speech vs Music vs Baseline

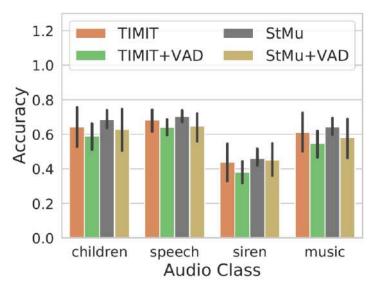


Reducing amount of training data



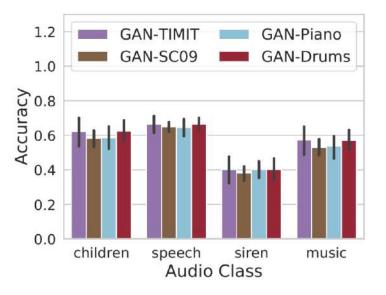
Page 106/107

Speech vs Music



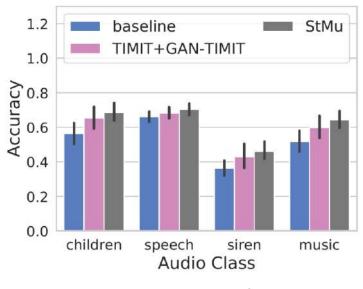
Trained with Datasets

When using data from datasets, **music is better than speech**



Trained with GANs

When using data from GANs, **speech is better than music**



Best vs Baseline

Both are better than the baseline

Summary of Contributions

- 1. Training a CNN with either speech or music data is an improvement over the state of the art, which uses noise for training.
- 2. Training with music produces an average improvement of **19%** with respect to the state of the art, while speech produces an improvement of **17%**.
- 3. Synthetic data generated using a **GAN** is as effective in training as using datasets.
- 4. Music data performs better than speech data for training when obtained using real sound recordings: however, when they are synthetically generated using a GAN, speech data produces better results than music data.
- 5. Using **25%** of the training data is as effective as using 100% of it.

Conclusion

- This thesis presented work on **Acoustic Source Localisation (ASL) in constrained environments**. The three constraints studied were the number and configuration of sensors; the signal samples; and training data, with the main findings summarised as follows:
- 1. In regard to the number and configuration of sensors, accuracy can be maintained at state-of-the-art levels (SRP) while **reducing computation sixfold**.
- 2. In regard to signal sampling, the algorithm presented in this work outperforms an audio fingerprinting baseline while maintaining a **compression ratio of 40:1**.
- In regard to training data, music training data is used to record an improvement of 19% against a noise data baseline using only 25% of the training data.