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Abstract

Radiomics is the relatively new term used to describe the collection of multiple features from
objects, or regions of interest, within a medical image. Usually these features are subsequently
used to classify these regions, for example for organ segmentation or to differentiate benign and
malignant tumours. Radiomic features are anything that can be measured about the regions of
interest from the image, for instance shape metrics (such as volume and aspect ratio), first-order
greylevel statistics (such as the mean and standard deviation), and texture metrics.

Textures are all around us. It is an intuitive concept, described qualitatively with words
such as rough, smooth, fine, coarse, regular, irregular, etc. Many ways have been proposed
to model textures mathematically in order to derive quantitative descriptions of it, the most
popular methods including greylevel co-occurrence matrices, Laws’ filters, Gabor filters, and
fractal dimension.

This study explores the use of Markov Random Fields Markov Random Field (MRF) in
texture analysis in Computer Tomography (CT) medical images. Specifically, a non-parametric
MRF approach is adopted to classify tissues based on their texture. Two applications are
investigated: firstly, the classification of entire regions of interest, and secondly, the classification
of individual pixels.

However, recent studies indicate that texture features can have poor between-centre repeata-
bility, being sensitive to different scanners and acquisition parameters. In CT imaging there is a
continual compulsion to reduce the radiation dose, which usually results in increased image noise.
This in turn has encouraged the application of image noise reduction algorithms. If texture
features are to be useful in practice, the effects of image noise and noise reduction must be less
than the differences between tissues of interest. Hence, this study also assessed the robustness
of the MRF texture features to both image noise and noise reduction.

In this study experiments were performed to assess the performance of the MRF in differen-
tiating textures from kidneys, liver, lungs and spleens in CT datasets. Each dataset was tested
at five simulated dose settings, both with and without noise reduction to assess the robustness
of the metrics to these parameters. The results showed that the Region of Interest (ROI)
classification accuracy ranged from 75.1% to 87.8% without Adaptive Iterative Dose Reduction
3D (AIDR3D) noise reduction, and between 84.5% to 85.8% for the AIDR3D corrected volumes.
The classification of individual pixels was more challenging. The results were better when
differentiating the liver and lung pixels, than for differentiating the spleen and kidneys. The
main problem was the misclassification of background pixels as an organ of interest, due to
insufficiently representative training data from other organs and anatomical structures. Future
work could include the use of 3D information to define textural features, as well as convex
optimization to build a more robust dictionary.
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Chapter 1

Introduction

1.1 Motivation

Radiomics [26] is rather a new term, used to describe a set of multiple features derived from

a Region of Interest (ROI) within a medical image. Normally these features are then used

to classify these regions; the features could include shape, first-order grey-level statistics, and

textural features. The most intuitive use of texture is to characterize different type of tissues.

Since intensity values among different organs are very similar, the use of these types of features

should help better differentiate tissues of interest.

(a) Thorax Computer Tomography (CT) scan
(b) Thorax CT scan with Adaptive Iterative Dose
Reduction 3D (AIDR3D) correction

Figure 1.1: Effect of AIDR3D application

This study focuses on the use of Markov Random Field (MRF) in texture analysis, specifically

applying them to CT imaging. CT imaging involves ionising radiation, which carries a risk
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of inducing cancer. Although this risk is extremely small, there is consequently a continual

compulsion to reduce the radiation dose, which usually results in increased image noise. Visually,

the increase in image noise has a large effect on appearance and qualitative texture assessment.

For this reason, one of the objectives of this study is to evaluate the robustness of the algorithm

under different noise conditions. This was done using real CT datasets that have been processed,

using realistic physical models of the noise, to simulate lower dose acquisitions. This approach

was taken so that the patient only had to be scanned once. A noise reduction algorithm, known

as AIDR3D, was also evaluated. Fig. 1.1 shows a CT coronal section through an abdomen, both

before and after the application of the AIDR3D noise reduction.

There are a large number of potential applications of textural features in CT images.

Probably the most obvious is segmentation. This can be easily solved for some organs, such as

differentiating liver and lungs. However, it is more challenging to differentiate, for example, the

liver and spleen, because their tissues are very similar. Another interesting application is to

use texture to describe changes in tissues, whether natural or due to pathology. Applications

could include oncology (cancer) treatments such as radiotherapy, where it is helpful to know

that the therapy is harming the tumour and not the surrounding healthy tissue. Furthermore,

such software could be of benefit to pharmaceutical companies by giving feedback on drug

performance faster and more quantitatively. Last, but not least, different tumour genotypes

may have different visible textures. This problem is approached by studying the correlation

between cancer imaging and gene expression, which is known as radiogenomics.

1.2 Radiomics

Figure 1.2: Schematic representation of a typical radiomics workflow [26]

Radiomics is a concept based on the use of ROI to compute a set of features that allows it

characterization. Fig. 1.2 illustrates the workflow, which consists in three steps. First of all, a

high quality standardized image is acquired. After that, the ROI is defined and finally a large

2



number of quantitative features is exacted from the previously defined ROI. These features

describe, amongst others, image intensity, texture and shape and size of the ROI. The final step

is the analysis of the features [26].

Radiomics provides complementary information to traditional sources of patient information,

such as demographics, blood biomarkers, or genomics. It aims to improve individualized

treatment selection and monitoring. If it is effective it has the potential to improve patient

treatment (by selecting the most appropriate and effective treatments), and patient experience

(by replacing invasive investigations with non-invasive imaging) [26].

1.3 Computer Tomography (CT) Imaging

Figure 1.3: Toshiba Aquilion One CT Scanner

Since its invention in the 1970s, CT has revolutionized medical imaging. It allows physicians

to obtain high-quality, cross-sectional images of the internal structures of the body. Fig. 1.3

illustrates a Toshiba CT Scanner.

CT images are reconstructed from “projection data”: a large number of measurements of

x-ray transmission through the patient. The resulting images are tomographic “maps” of the

x-ray linear attenuation coefficient. The fundamental task of a CT system is to rapidly make

3



a large number of highly accurate measurements of x-ray attenuation through the patient. A

basic system consists of a patient table, a control console, a computer and a gantry that itself

contains the rotating x-ray source and detectors, and the data-acquisition system (DAS) [20].

1.3.1 Adaptive Iterative Dose Reduction 3D (AIDR3D)

One of the most important disadvantages of Computer Tomography (CT) imaging is the amount

of radiation that the patient receives, in contrast to other technologies. The dose of radiation

applied to the patient can be reduced, however the result will be a very noisy image. This

problem has lead to a lot research oriented to noise reduction, preserving spatial resolution. In

this context, Toshiba has been committed to reduce the patient dose, as illustrated by Fig. 1.4.

In 2011, a technology that reduces noise and improves spatial resolution was developed and it

was called AIDR3D.

Figure 1.4: Toshiba Commitment to Dose Reduction

The AIDR3D algorithm is designed to work in the raw data, as well as in the reconstruction

domain. It uses a scanner model and a statistical noise model considering photon and electronic

noise to eliminate noise due to a photon starvation in the projection data. The statistical and

scanner models are used with projection noise estimation for electronic noise reduction processing

which takes place in the raw data domain. The first one analyse the physical properties of the

CT scanner, while the second one is in charge of modelling the electronic and quantum noise.

The projection noise estimation takes care of noise and artifacts reduction. The initial image is

used as an input image in every iteration to be compared with the output image. A sophisticated

iterative technique is then performed to optimize reconstructions by performing sharpening and

4



smoothing at the same time. Finally, a weighted blending is applied to the original reconstruction

and the output of this iterative process to maintain the noise granularity. The result is an image

with an increased signal to noise ratio and a improved spatial resolution [12].

1.4 Aims

The main goal of this project is to implement and evaluate a texture analysis metric based on

Markov Random Field (MRF) and compare it with other texture metrics. The evaluation will be

made on both simulated and real CT datasets, with the aim of finding texture measures which

are able to differentiate tissue types while being insensitive to the image scanner configuration

(i.e. features such as image noise level, resolution, etc.). In order to achieve this goal, the

objectives to be accomplished are presented below.

• Implement a region classification algorithm using Markov Random Fields to model image

texture.

• Implement a voxel classification algorithm that differentiate between different organ tissue

• Compare the proposed method with several different texture analysis metrics in real and

simulated CT datasets.

• Evaluate the ability of the texture metrics to differentiate tissue types and their sensitivity

to image noise.

1.5 Thesis Outline

This thesis is structured as follows: Chapter 2 presents the problem of texture classification

and states the main reasons that makes it challenging and worth to be studied. Chapter 3

summarizes the state of the art on texture classification and dedicates a section to the use of

texture in CT Imaging. In Chapter 4 the methodology that lead to the implementation of a

MRF algorithm is explained, while Chapter 5 illustrates the results obtained in two different

datasets. Finally, Chapter 6 summarizes the conclusions and the future work.
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Chapter 2

Problem Definition

2.1 Medical Motivation

Discriminating one texture from another can be a challenge even for the human eye in some

situations. In Computer Vision, textures can be described by a different amount of features

studied through the literature [33]. The main challenge consist in determining which features

are relevant enough to successfully distinguish one texture from another.

(a) Kidneys (b) Liver

(c) Lungs (d) Spleen

Figure 2.1: Regions of Interest
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In medical image analysis, texture is one of the most useful features, since it can be applied

to a wide variety of problems. One example is the classification of organ tissue, which is hard to

classify using shape or gray level information because shape is not consistent and the intensities

overlap for the case of soft tissues. The use of textures might be useful in this context, considering

that it is homogeneous among the slices forming the 3D image [43].

This thesis deals with the problem of texture classification, applied to Computer Tomography

(CT) imaging. Our goal is to differentiate between four different tissues, belonging to Region

of Interest (ROI) previously defined: kidneys, liver, lungs and spleen. Fig. 2.1 illustrates the

organs.

2.2 Technical Motivation

The problem of differentiating one texture from another depends not only on the features used,

but also on different considerations about the data itself, as well as the conditions in which it

was acquired. This section illustrates the main practical technical considerations that need to

be taken into account when working with textures.

Scale

Texture features depend on the scale in which they are analysed. Fig. 2.2 illustrates an example

of a texture where the zooming factor started at 16 (left) and is divided by two each time until

the zooming factor is 1 (right). It is clear from this example that the way we perceive textures

is different in each case, even though the image is the same.

Figure 2.2: Texture at different scales [39]

Wide dynamic range

The high range of intensities in the medical images affects the texture features specially since

some of the high values are noise. This high range of intensities also affects computational time.

In the datasets used in this work, CT images are quantized in 16 bits.

7



Noise

The parameters of a CT scanner need to be configured according to the x-ray dose that can

be applied to the patient. In theory, a lower dose is desired, however the lower the dose, the

noisier the image. This selection of parameters affects the resulting image and therefore the

appearance of the textures.

Object texture inhomogeneity

An object might have several textures. One example of this are the lungs, which present seven

main textures. Fig. 2.3 shows how diffuse lung disease changes the texture of the lungs. Six

different patterns of texture were identified by [38].

Figure 2.3: Seven typical textures seen in the lung. As these images show, a single lung may
contain more than one texture type [38].

Algorithm parameters

Poor results are not always caused by a bad algorithm. Normally, even though the algorithm

can achieve very good performance, the bad choice of parameters reduce the accuracy of the

8



texture classifications.

Similarity metric

The definition of a robust distance/similarity metric that measures how similar or how different

two textures are from each other is also a fundamental issue in texture classification [33].

2.3 Proposed method

Taken into consideration these technical challenges, we chose a non-parametric Markov Random

Field (MRF) as a strong descriptor for our application. The use of a dictionary to represent the

textons of a particular class aims to overcome the problems of noise and texture inhomogeneity.

Moreover, the approach uses a histogram that is oriented to beat the problem of wide dynamic

range in CT images. Different parameters and similarity metrics were tested as well, in order

to find the ones that leads to a more accurate classification. Further details can be found

in Chapter 4, in which we also compare them with other state-of-the-art descriptors and

classification techniques.
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Chapter 3

State of the Art

This chapter reviews the main published work related to classification using textural features.

Section 3.1 presents a classification of the most common texture metric algorithms, while section

3.3 focuses on the use of Markov Random Field (MRF) for texture classification. Last but

not least, section 3.4 review different methods that use textures to classify voxels in Computer

Tomography (CT) images.

3.1 Texture Features Extraction Methods

This section presents some of the most important techniques to extract textural features divided

into four different categories, according a classification presented in [36].

3.1.1 Statistical Methods

1 1 4 3

2 1 3 2

5 4 1 2

4 1 2 5

1 2 1 0 0

1 0 0 0 0

0 1 0 0 0

1 0 1 0 0

0 0 0 1 0

1

2

3

4

5

1 2 3 4 5

Figure 3.1: Gray-Level Co-ocurrence Matrix (GLCM) [34]. The intensity 1 occurs with the
intensity 1 one time (blue cells) and the intensity 2 occurs with the intensity 1 two times (pink
cells).
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GLCM

The most common method to extract textural features extraction is the use of GLCM, which

characterize the texture of an image by calculating how often pairs of pixel with specific values

and in a specified spatial relationship occur in an image. After its calculation, several statistics

measures are extracted from this matrix [33].

Fig. 3.1 illustrates the computation of a GLCM (right) from a 2D image (left). The GLCM

has size n by n, where n represents the maximum intensity of the image. Each position i, j

represents the number of times that the intensity i occurs with the intensity j. In this example,

the intensity 1 occurs with the intensity 1 one time (blue cells) and the intensity 2 occurs

with the intensity 1 two times (pink cells). In this particular case, the distance, d, between

intensities is 1 and the angle, θ is 0◦, however both parameters can be modified depending on

the implementation. Fig. 3.2 illustrates some possible angles for a 2D image: 0◦ (yellow), 45◦

(green) and 90◦ (orange).

GLCM has probed to be successful to discriminate textures, in particular when the ratios or

element values are used [24]. The main drawback of this technique is the complexity in time of

its calculation.

Figure 3.2: GLCM Orientations. 0◦ (yellow), 45◦ (green) and 90◦ (orange).

Gray-Level Run-Length Matrix (GLRLM)

Run-length statistics represents the coarseness of a texture in specific directions [43], the same

ones defined for the GLCM. Typically, fine textures contain more short runs with similar

intensities and coarse textures have more long runs with different gray level intensities.

0 0 1

2 2 2

2 0 0

0 2 0

1 0 0

1 0 1

0

1

2

1 2 3

Figure 3.3: GLRLM. The number of pixels equal to zero for run-length 1 is 2 (blue), while the
number of pixels equal to two for run-length 2 is 1 (pink)
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A run-length matrix P is defined as a n by k matrix, where n is the maximum gray level in

the image and k is equal to the possible maximum run length in the image [43]. Element P (i, j)

represents the number of runs with pixels of gray level intensity equal to i and length of run

equal to j along a specific orientation. Fig. 3.3 illustrates an example of the computation of a

GLRLM for 0◦ orientation: the number of pixels equal to zero for run-length 1 is 2 (blue), while

the number of pixels equal to two for run-length 2 is 1 (pink).

Once the run-length matrices are calculated along different directions, several texture

descriptors are computed. Typically, some common descriptors extracted from GLRLM are:

short run emphasis (SRE), long run emphasis (LRE), high gray-level run emphasis (HGRE),

low gray-level run emphasis (LGRE), pair-wise combinations of the length and gray level

emphasis (SRLGE, SRHGE, LRLGE, LRHGE), run-length non- uniformity (RLNU), grey-level

non-uniformity (GLNU), and run percentage (RPC) [15]. The main drawback of this approach,

similarly to GLCM is the expensive computational time.

3.1.2 Texture Filter Methods

Gabor Filters

A Gabor function in 2D is defined by Eq.3.1.

G(x, y;x0, ωx0
, σx, y0, ωy0 , σy) ≡ e

− (x−x0)2

2σ2x
− (y−y0)2

2σ2y ejωx0x+jωy0y (3.1)

The Fourier Transformation of this function is presented in Eq. 3.2.

Ĝ(ωx, ωy;x0, ωx0 , σx, y0, ωy0 , σy) = 2πσxσye
−σ

2
x(ωx−ωx0 )2

2 −
σ2y(ωy−ωy0 )2

2 (3.2)

Gabor filters are used to extract local image features by convolving an input image with

a 2-D Gabor function. The filter acts as a local band-pass filter with certain optimal joint

localization properties in the spatial domain and in the frequency domain [10].

Figure 3.4: Gabor filters bank at different orientations [44]

Fig. 3.4 illustrates an example of a Bank of Gabor Filters that contains different orientations

and spatial frequencies, whose objective is to cover appropriately the spatial frequency domain.
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The images are convolved with the filter bank and the resulting features can be used directly for

classification or segmentation or they can be transformed into a post-processed feature vector.

Despite Gabor filters has probed to work very well for texture classification, their main

drawback is that a good result depends entirely on the election of the right type of filters.

Moreover, Gabor filters have not zero mean, which produces a non-uniform coverage of the

Fourier domain [22].

Laplacian of Gaussian (LoG) Filters

The 2-D LoG function centered on zero and with Gaussian standard deviation σ is presented in

Eq. 3.3.

LoG(x, y) = − 1

πσ4

[
1− x2 + y2

2σ2

]
e
x2+y2

2σ2 (3.3)

The LoG operator calculates the second spatial derivative of an image. That is to say, in

areas where the image has a constant intensity the LoG response will be zero, while in the

vicinity of a change in intensity, however, the LoG response will be positive on the darker side,

and negative on the lighter side. This response produces the effect of edge sharpening in an

image [25]. Fig. 3.5 illustrates the LoG filter in 2D.

Figure 3.5: Laplacian of Gaussian function in 2D [1]

In [22] is proposed an image retrieval approach based on log-Gabor filter scheme. They

made emphasis on the filter design to preserver the relationship with receptive fields and take

advantage of their strong orientation selectivity. The experimental results shows that this

approach has better results than the use of Gabor filters by themselves.
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3.1.3 Model-based Methods

Fractal Dimension

Fractal dimension is an essential parameter of Fractal geometry, as well as an important

characteristic of fractals, because it contains information about their geometric structure. Fig.

3.6 illustrates the first iterations to build a fractal.

In a bounded set X considered in Euclidean n−space, the set X is said to be self-similar

when X is the of Nr distinct non-overlapping copies of itself, each of which is similar to X scaled

down by a ratio r. In Eq. 3.4 can be seen how the the Fractal Dimension (D) can be derived

from these variables [29].

D =
log(Nr)

log( 1
r )

(3.4)

In [17] is presented an overview of the algorithms to calculate the fractal dimension of a

signal, including box-counting methods, fractional Brownian motion (fBm) methods and area

measurement methods.

Figure 3.6: First iterations to build a fractal [17]

Even thought fractal dimension has been widely used in different texture applications, in

some cases, fractal analysis does not perform correct image segmentation. In fact, some images

are complex to study because they present irregularities and more regular zones at all scales,

without following a clear law [17].

Autoregressive Model

Autoregressive models are used in image analysis to express spacial dependency between

neighbouring pixels. Eq. 3.5 defines a polynomial with lag operators Lk0yij = yi−kj ,Lk1yij = yij−k.

θ(z0, z1) := 1−
n∑

ij=−n
θijz

i
0z
j
1, θ00 = 0 (3.5)

The autoregressive random field yij is defined by the stochastic difference, as illustrated by
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Eq. 3.6, where ηij represents white noise.

θ(L0,L1)yij = ηij (3.6)

In [23] is presented an approach that uses rotation invariant autoregressive models for texture

classification. The model affords rotation invariant parameters, however it becomes overcomplete

and ultimately ill-conditioned as the number of nodes are increased (to achieve invariance to

smaller rotations).

MRF

MRF are one of the most common Model Based Methods used for texture classification. The

basic principle, is the assumption that the intensity at each pixel in the image depends on the

intensities of only the neighbouring pixels [37]. Since MRF are the main focus of this work,

Section 3.3 describes them in more detail.

3.1.4 Frequency Domain and Wavelet Methods

Fourier Transform (FT)

The Fourier Transform corresponds to a change of basis, to represent a signal as a infinite

weighted sum of an infinite number of sinusoids. Eq. 3.7 defines the Fourier Transform of a

signal g(x, y) [8]. Fig. 3.7 illustrates an example of the FT of a 2D function.

F(g(x, y))(u, v) =

∫ ∫ inf

inf

g(x, y)e−i2π(ux+vy)dxdy (3.7)

Figure 3.7: Fourier Transform in 2D [9]

Frequency-based texture descriptions are usually based on transforms that provide mea-

surements of the spatial frequency spectrum. The most common method in this context is

the FT. The features are obtained by taking the transform of an area of interest a calculate

the FT, producing a 2D spectrum. It is converted from a Cartesian to a polar coordinate
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system, where the radius, r, indicates frequency and the angle, θ, its direction. In case an

orientation-independent texture measurement is desired, the two-dimensional polar spectrum can

be averaged over, producing a one-dimensional, directionally invariant, frequency spectrum [3].

Wavelets

A wavelet ψ is a function produced by shifting by b and scaling by a a basic function ψ(t) called

mother wavelet, as illustrated by Eq. 3.8 [24].

ψab(t) ≡
1√
a
ψ

(
t− b
a

)
(3.8)

Fig. 3.8 illustrates an example of an image decomposition using the Wavelet transform, which

extract directional details that capture horizontal, vertical and diagonal activity. This leads

actually to the basic idea of multi-resolution analysis, which allows for the zooming in and out

on the underlying texture structure [4].

Figure 3.8: Wavelets [9]

Dettori and Semler [4] presented a paper focused on multi-resolution texture analysis for

the classification of tissues from normal chest and abdomen CT scans. They used different

texture features from distinct multi-resolution transforms: the Haar wavelet, Daubechies, Coiflet

wavelet, ridgelet and curvelet transforms. Their results were compared with classification using

coocurrence and run-length matrices, showing that the multiresolution features outperform the

statistical methods.

3.2 Combined Methods

As could be seen on the previous sections, different approaches presents advantages and disad-

vantages, depending mostly on the type of dataset they were tested on. For this reason, some
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authors have tried to combine the information provided by each method, in order to improve

the way in which texture in characterized.

In [28], an approach that combines statistical and spectral methods for classification of

texture images is presented and compared to other combined textural feature extraction methods:

Wavelet Statistical Features (WSF), Combination of wavelet and second order statistical features

and Spatial frequency features. The proposed method is called Multi Resolution Combined

Statistical and Spatial Frequency (MRCSF) and combines first order statistical properties like

mean, energy, variance and entropy, second order statistical properties like Markov Random

Field Matrix, GLCM combined with spatial frequency of Multi resolution analysis. The results

showed that the Classification rate for MRCSF technique is 92.6% for 112 images.

Barley and Town [2] presents a similar approach, in which the efficacy of different descriptors,

e.g. GLCM, Gabor wavelets, steerable pyramids and Scale-invariant feature transform (SIFT),

is evaluated by combining several of them by means of machine learning approaches such as

Bayesian networks, support vector machines, and nearest-neighbour approaches. A comparison

of the average and best success rates demonstrates the importance of selecting the correct ma-

chine learning technique for each classification task.

3.3 Markov Random Fields (MRF)

3.3.1 Parametric Models

In order to build the model, the image is represented by an M by N lattice S and a neighbourhood,

N is defined. Fig. 3.9 illustrates the different type of neighbourhoods that could be defined

around a pixel, establishing the order of the MRF model. Typically, the size of the neighbourhood

is determined according to the data and the problem that will be solved.

The random variables are the grey values of the image, X(i, j) at site (i, j). A label represents

a site distinction in the image defined on S. Let L be a set of k discrete labels, {l1, l2, ..., lk}. A

discrete MRF is a random field that satisfies the properties described below [37]:

1. Positivity: P (X) > 0 for all X.

2. Markovianity: P (X(i, j)|all point inL except (i, j)) = P (X(i, j)|all point inN )

3. Homogeneity: P (X(i, j)|all point inN ) depends only on the configuration of neighbours

and is translation invariant.

The task in classification is then to assign Xs the right label from the set L. The objective

is the joint posterior probability of the MRF labels [16], determined according to Eq. 3.9 by
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Figure 3.9: Markov Random Field model orders

means of the Bayes rule. The statistical criteria for optimality is the Maximum a posterior

probability (MAP), which consist in assigning labels, such that P (l|x) is maximum.

P (l|x) = P (x|l)P (l) (3.9)

Generally, MRF characterize mutual influences among pixels using conditional MRF distri-

butions, that is to say, they derive the joint distribution from conditional distributions, which

is indeed a very difficult task. Hammersley and Clifford (1971) found out a solution to this

problem by stating the equivalence between MRF and Gibbs distributions. The MRF-Gibbs

equivalence theorem indicates that the joint distribution of a MRF is a Gibbs distribution, with

respect to a specific neighbourhood system [16].

A Gibbs random field is completely characterized by its energy function. In order to use

this property, the neighbourhood, N , needs to be decomposed in a set of small neighbourhoods

that form cliques, defined as a set of vertices, such that every par of vertices is connected by an

edge [18]. Therefore, the cliques could be single site, pairs, triples and quadruples, as illustrated

by Fig. 3.10, where different clique types for the second-order neighbourhood are presented. In

the same way as the neighbourhood size, cliques are determines according to the problem and

are usually used in the definition of the conditional probabilities.

Figure 3.10: Clique types
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Eq. 3.10 illustrates the probability representation according to Gibbs distributions, where

E(x) is a energy or cost function, presented by Eq. 3.11 and Z is the partition function, exhibited

in Eq. 3.12.

P (x) =
1

Z
exp−E(x) (3.10)

The elements of the sum are known ar clique potencials, and depends, as their name says, on

the cliques defined for the problem.

E(x) =
∑
c∈C

Ψc(xc) (3.11)

Z =
∑
x

exp(−E(x)) (3.12)

In conclusion, we are interested in finding the most probable labelling,

l∗ = arg max
l

P (l|x) = arg min
l

E(l;x) (3.13)

Which is known ad MAP inference or energy minimization and could be solved using a large

amount of techniques including dynamic programming, graph-cuts, belief propagation among

others.

In [32] is presented a survey about energy minimization algorithms for pixel-labelling tasks.

The authors compare the performance and different trade-offs among graphs cuts, loopy belief

propagation (LBP), tree-reweighted message passing (TRW) and iterated conditional model

(ICM). The algorithms were applied to a binary segmentation problem, which led to conclude

that graph cuts are guaranteed to compute the global minimum, as is TRW, while LBP

implementations come extremely close but never actually attain the global minimum.

In the literature, there is a large amount of articles that use this framework to model different

type of labelling problems. In general, the classification problem is related to assign a class to

each image, composed by only one type of texture, while the segmentation problem focuses on

assigning labels to pixels. For this reason, the literature review includes methods for classification

and segmentation.

Kato and Pong [13] presents an approach for image segmentation, in which they combine color

and texture features. Their framework uses combinatorial optimization (simulated annealing) to

maximize the posterior probability. The misclassification rate obtained is however very big for

256 by 256 images.

Parallel to the traditional approaches, different authors had tried to come up with new ideas

to solve this discrete optimization problem. Hochbaum [11] proposes an efficient polynomial time
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algorithm to solve the MRF problem and apply it for image segmentation. The experiments are

carried out in simulated medical images and the results are visually satisfactory, however, no

quantitative result is presented and no relevant dataset is used to evaluate the algorithm.

3.3.2 Non-Parametric Models

In contrast with the approaches previously described, non-parametric models do not have a fix

number of parameters, but instead the number of parameters grow with the amount of training

data [21], since the complexity of the model increase upon the sample. For example, Varma and

Zisserman [40] proposed an approach based on a two dimensional histogram, that represents

the joint pdf between the central pixels and the neighbourhood texton representation, using

a dictionary. They later extended their approach to be used on image patches [41], obtaining

97.9% accuracy on the San Francisco Dataset [14], where hand-segmented regions are classified,

after using only a single image for training.

The following chapters investigate the use of these non-parametric methods in CT imaging.

The non-parametric approach was chosen based on the high accuracies attained by Varma and

Zisserman, and that the method relies on fewer prior assumptions, such as the form of the

distribution. Section 4.1 describes the non-parametric method used in more detail.

3.4 Texture Algorithms in CT Imaging

Texture classification is, as could be seen along this chapter, a well known problem in computer

vision. However, it has also been widely studied in the medical imaging field. One common

application is the use of textures to characterize tissues in CT images, in order to perform

segmentation, diagnosis, etc.

In [27] texture analysis is used to characterise oral cancer involving mucosa and to assess its

effectiveness in differentiating between the various grades of the tumour on CT images. The

texture features used were fractal dimension, lacunarity and GLCM, which were computed

for each Region of Interest (ROI): lesions and contralateral normal side. The results showed

that the difference between the mean fractal dimension and GLCM parameters of the lesion

compared with the normal ROI were statistically significant, while there were no difference

observe between different tumor types.

A similar approach can be found in [19], except that this time the objective is to define

an optimally performing computer-aided diagnosis (CAD) architecture for the classification

of liver tissue from non-enhanced CT. Similarly as in the previous case, the ROI are already

defined by radiologist and for each of them a set of textural features are extracted, including

first order statistics, spatial gray level dependence matrix, gray level difference method, Law’s
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texture energy measures and fractal dimension measurements. Two different classifiers were

constructed and compared: a five multilayer perceptron neural networks (NNs) and a second one

that comprises five different primary classifiers: one multilayer perceptron NN, one probabilistic

NN, and three k-nearest neighbour classifiers. The best results are obtained using the last

classifier with selected features from a fused feature set.

At last, Susomboon and Raicu proposed an approach for automatic single-organ segmentation

in 2-D CT images in [30]. They approach consisted in three steps: probability image of the organ

of interest computation using texture features, split-and-merge segmentation and region growing

for refinement. To extract texture features, a grey-level co-ocurrence matrix was computed

and nine texture descriptors were extracted: entropy, energy, contrast, sum average, variance,

correlation, maximum probability, inverse different moment, and cluster tendency. The results

presented 88% sensitivity and 96% specificity. The authors extended this approach to 3-D CT

in [31].

21



Chapter 4

Methodology

4.1 The MRF Classifier

In [40], Varma and Zisserman introduced a classifier that uses the intensity values of a local

neighbourhood as texture features, in order to perform single image classification on different

texture class instances.

The algorithm models the Probability Density Function (PDF) of the central pixels condi-

tioned on their neighbours. According to the information presented in Chapter 3, it can be

clearly seen that it represents the principle of a Markov Random Field (MRF), formalised by Eq.

4.1, where xc is a pixel location in the 2D integer lattice on which the image I has been defined

and N (xc) is the neighbourhood around xc. This implies that the full conditional distribution

of xc depends only on the neighbours N (xc).

p(I(xc)|I(x),∀x 6= xc) = p(I(xc)|I(x), x ∈ N (xc)) (4.1)

The proposed approach is divided into two main stages: a learning stage where statistical

distribution models of texture classes are learned from training examples, and a classification

stage where novel images are classified by comparing their distributions to the learnt models.
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Figure 4.1: Learning Pipeline. A Region of Interest (ROI) slice is used as input. Textons are
extracted from the slice and aggregated to be subsequently clustered using K-means algorithm
to create a dictionary. The pixels of the original ROI are labelled using their distance to the
textons dictionary and a 2D histogram is generated, as a model of the ROI.
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4.1.1 Learning stage

Fig. 4.1 illustrates the pipeline of the learning stage, which is described in detail below.

1. A texton is represented by a set of N2− 1 pixels, in the neighbourhood, N , of a pixel. Fig.

4.2 illustrates this concept: the yellow pixels form a texton in a 3 by 3 neighbourhood. It

is important to note that the central pixel is not included in the texton.

1 4 8

10 25 5

1 7 3

1 4 8 10 5 1 7 3

Figure 4.2: Texton Representation. The texton associated to the central pixel (red) is formed
by the pixels of its neighborhood (yellow).

2. The textons calculated in step 1 from all the training images are then aggregated by

the known texton class (i.e. lung, liver etc.). In the original implementation of Varma

& Zisserman, only a subset of the training set is selected in this stage, for performance

reasons, however in our implementation we used all the training images.
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Figure 4.3: Textons Dictionary: This is an example of a dictionary of 10 textons per class,
represented by a different color in the illustration.

3. The aggregated textons from all the training images are then clustered using the K-means

algorithm [5]. The resultant cluster centres form a dictionary of textons. The most

important parameter required by the K-means algorithm is the number of cluster centres.
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Varma and Zisserman found that 10 cluster centres performed best on their datasets, and

therefore we used this as the starting point in our investigation. Fig. 4.3 presents an

example of a dictionary for the case of a 3 by 3 neighbourhood. Each row represents a

texton, a vector of eight pixels. Since there are four texture classes in our experiments

(see chapter 2), when the number of K-means cluster centres is 10, the dictionary will

contain 40 rows in total (i.e. 10 textons per class, one for each K-mean cluster centre).

4. The pixels of each image in the training set are labelled to the index of the closest texton

in the dictionary. The distance from a texton to the dictionary of textons is calculated

by computing the euclidean distance of each texton. Fig. 4.4 illustrates an example of

the calculation of the distance from a single texton to the dictionary. In this case, the

minimum distance corresponds to the 10th texton in the dictionary, which means that the

pixel that is represented by this texton, will be labelled as 10.
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Figure 4.4: Distance to Dictionary. The texton of the pixel that is intended to be labelled is
compared against each texton of the dictionary by using the euclidean distance. The label
corresponds to the index of the texton in the dictionary with the minimum distance.

5. Once the label of each pixel has been assigned, we retrieve the original intensity value

of that pixel. We accumulate this value as a frequency count of the histogram. After

repeating this process for all labels, we have one histogram per label, so we concatenate

the histograms of all labels to generate the 2D histogram (Fig. 4.5). In this case, since the

Computer Tomography (CT) images are in 16-bits, the total range of values can not be

covered. For this reason, the values between the percentile 25 and 75 of the total range of

values of the training set was used to build the histogram.
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Figure 4.5: 2D Histogram. Each row represents an intensity histogram of grey levels from pixels
belonging to the same label.

4.1.2 Classification stage

Extract
Textons

Label
Pixels

2D His-
togram

KNN
ROI

class

Figure 4.6: Classification Pipeline. An ROI slice is used as input. The pixels of the original
ROI are labelled using their distance to the textons dictionary and a 2D histogram is generated,
as a model of the ROI. Using the K-Nearest Neighbour (KNN) classifier, the ROI is assigned to
the same class as his closest model.

1. A texton is represented by a set of N2 − 1 pixels, in the neighbourhood, N , of a pixel, in

the same way as in the previous stage.

2. The pixels of each image on the training set are labelled to the index of the closest texton

in the dictionary build on the learning stage.

3. For each of the textons in the dictionary, a one dimensional distribution of the central

pixels’ intensity is learnt and represented by a 2D histogram, using the same parameters

as for the training set.

4. Each model on the testing set is compared against each model on the training set and

following the KNN approach, the test image is classified into the same class as it’s closest

train image. The authors proposed the use of the χ2 distance, illustrated by Eq. 4.2 as

a metric to evaluate the distance between models. We went beyond that and proposed
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to use the euclidean distance, presented in Eq. 4.3, given that it characterizes better the

degree of proximity between histograms.

C(pi, qj) =
1

2

K∑
k=1

[hi(k)− hj(k)]
2

hi(k) + hj(k)
(4.2)

d(p,q) = d(q,p) =
√

(q1 − p1)2 + (q2 − p2)2 + · · ·+ (qn − pn)2 (4.3)

4.2 MRF vs. Statistical Methods

In order to compare the proposed method with state of the art algorithms, a series of features

were calculated using a Toshiba Medical Visualization Systems (TMVS) command line tool that

calculates a wide range of features within a given set of ROI, including those from Gray-Level

Co-ocurrence Matrix (GLCM) and Gray-Level Run-Length Matrix (GLRLM) presented in

Sections 3.1.1 and 3.1.1 respectively.

Features for Denoised Volumes
Mean Percentile 90

Mean Absolute Percentile 99

Root Mean Square Interquartile Range

Standard Deviation GLCM bins32 (1 0 0) SumVariance

Skew GLCM bins32 (1 1 0) SumVariance

Kurtosis GLCM bins32 (0 1 0) SumVariance

Median GLCM bins32 (-1 1 0) SumVariance

Minimum GLCM bins32 (1 0 0) ClusterTendency

Maximum GLCM bins32 (1 1 0) ClusterTendency

Range GLCM bins32 (0 1 0) ClusterTendency

Percentile 1 GLCM bins32 (-1 1 0) ClusterTendency

Percentile 10 RLE bins32 Mean GrayLevelNonUniformity

Percentile 25 RLE bins32 Mean RunLengthNonUniformity

Percentile 75

Table 4.1: Set of features used for volumes with Adaptive Iterative Dose Reduction 3D (AIDR3D)
correction

Table 4.1 summarizes the features used to classify denoised datasets. Among others, it

includes statistics of the ROI, such as mean, median and standard deviation. Table 4.2 illustrates

the set of features used to classify the noisy datasets. Since the intensity values have a large

variation in those volumes, the statistics of the region are not included, instead the Gray Level

Non Uniformity calculated from the GLRLM is calculated in different directions.
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Features for Noisy Volumes
RLE bins32 (0 0 1) RLE bins32 (0 1 1)

RLE bins32 (1 0 1) RLE bins32 (0 1 0)

RLE bins32 (1 0 0) RLE bins32 (0 1 -1)

RLE bins32 (1 0 -1) RLE bins32 (-1 1 1)

RLE bins32 (1 1 1) RLE bins32 (-1 1 0)

RLE bins32 (1 1 0) RLE bins32 (-1 1 1)

RLE bins32 (1 1 -1) RLE bins32 Mean

Table 4.2: Set of features used for volumes without AIDR3D

For the purpose of classification, a bagged decision tree was used. It bags an ensemble of

decision trees for classification. Every tree in the collection is grown on an independently drawn

bootstrap replica of input data. Observations not included in this replica are ”out of bag” for

this tree. To compute predictions for unseen data, the bagged decision tree takes an average of

predictions from individual trees [35].

4.3 Segmentation

The problem of classifying images that represents only a single texture is extrapolated to images

in which more than one texture is present and it’s necessary to identify the pixels that belong

to each class.

The initial approach to solve this problem was to label each of the pixels according to the

distance of each texton to the dictionary and assign the label according to the texton. To mask

the background of the image, we define a distance threshold above which a pixel is considered

to be too far from the training set. Any pixel above this threshold is labeled as background.

This threshold is initially set to 1.000.

In order to improve the segmentation, different strategies were intended. This section

summarizes their main principles.

4.3.1 Parameter Configuration

The first step considered the parameters of the algorithm that could be altered to enhance the

result. We considered different neighborhood sizes (3, 5 and 7), as well as different dictionary

sizes (10, 20 and 30). All of these settings were tested while keeping the background threshold

constant (1000).
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4.3.2 Majority Voting Scheme

A Majority Voting Scheme was implemented by comparing the three closest element of the

dictionary of textons.

4.3.3 Morphological Operations

The anatomy of human organs are continuous in the space, which means that it is not possible

that one organ has holes in the middle of it or that it has some small portions separated.

Following this principle, we applied morphological operations, such as erosion and closing to

improve the segmentation results by filling the gaps and removing isolated pixels [9].

4.3.4 Adaptive Threshold

The background threshold value (1000) was arbitrarily selected. A better way to determine

this value might be selecting it from the training set by using the distance between the textons

and the dictionary on each slice and finding different statistics to find the best value for the

threshold.

4.3.5 Background Information

Since the background include different organs, such as the heart, the stomach, as well as bones

and air, some information about the background was added to the dictionary. In order to achieve

this, some slices were randomly selected from the training volumes and the textons of non-class

pixels were extracted and clustered with the K-means algorithm to be added to the dictionary.

4.4 Datasets

Two different datasets were used to perform experiments. The first datasets consisted of single

textured images, while the other one consisted in CT images.

4.4.1 Universitat de Girona (UdG) Dataset

The single-textured dataset [42] consisted of real textures commonly found in our every day life,

such as beans, lentils, pasta, paper, etc., as illustrated in Appendix A.1. In total, 20 different

classes compose this dataset and for each class, six different samples are available. They were

captured at two different distances, using 6 illuminant tilt angles: 0, 60, 120, 180, 240, 300.
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4.4.2 TMVS Datasets

The dataset is composed by 5 patients, identified by sequence 04635 to 04649. For each patient,

there are 10 different volumes, which corresponds to different noise levels, and with/without

noise reduction (AIDR3D). Table 4.3 summarizes the percentage of dose reduction.

AIDR3D No AIDR3D
0 0
25 25
50 50
75 75
88 88

Table 4.3: Percentage of dose reduction.

The DICOM volumes corresponds to CT Images in high resolution, of size 512 by 512. The

number of slices varied depending on the patients from 572 to 954. Appendix A.2 illustrates an

example of one slice of each image.

4.5 Evaluation

In order to evaluate the performance of both implementations, different metrics are used, based

on the number of hits and failures in the classification.

True diagnosis
Positive Negative

Screening test
Positive TP FP
Negative FN TN

Figure 4.7: Confusion Matrix

Fig. 4.7 illustrates a Confusion Matrix, elaborated from the statistics presented below [21].

• True Positives (TP): Number of elements correctly classified as Positive by the Screening

test.

• False Positives (FP): Number of elements classified as Positive by the Screening test,

but the true diagnosis is that they are Negative.

• True Negatives (TN): Number of elements correctly classified as Negative.

• False Negatives (FN): Number of elements classified as Negative by the Screening test,

when they are actually Positive in the True diagnosis.
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4.5.1 Accuracy

Corresponds to the percentage of elements correctly classified, that is to say, the sum of the

True Positives and True Negatives, divided by the total number of elements, as represented by

Eq. 4.4.

ACC =
TP + TN

P +N
(4.4)

4.5.2 Precision

Represents the percentage of elements that are correctly labelled as member of the class, from

the total number of elements identified as member of the class. Eq. 4.5 presents the formula to

calculate this value.

PPV =
TP

TP + FP
(4.5)

4.5.3 Recall

Represents the percentage of elements correctly classified as member of the class, from the actual

total number of member of the class. Eq. 4.6 illustrates the formula to compute this value.

TPR =
TP

P
=

TP

TP + FN
(4.6)

4.5.4 Dice Coefficient

Also called F1-score, is the harmonic mean of precision and recall [21]. Eq. 4.7 illustrates the

formula to calculate. The most important characteristic of this metric is its independence of the

true negatives, which made it quite representative in cases when the background is too big, as

occurs with CT images.

F1 =
2TP

2TP + FP + FN
(4.7)
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Chapter 5

Results

This chapter presents the results obtained when performing different experiments that use the

methodology illustrated in Chapter 4.

5.1 Texture Classification

Using the Universitat de Girona (UdG) dataset, the images were divided into training set (4 per

class) and testing set (2 per class) and classified using the implementation of Varma & Zisserman

presented in Section 4.1. Three different parameters were considered in the experiments, in order

to validate their influence in the algorithm’s performance. The evaluation used the accuracy

metric defined in Section 4.5.1.

Neighbours Bins Centroids Accuracy
3 256 10 95
3 128 10 83.75
3 256 20 95
5 256 10 97.5
5 128 10 82.5
5 256 20 96.25
7 256 10 96.25
7 128 10 82.5
7 256 20 97.5

Table 5.1: Experiments on UdG Dataset

Table 5.1 summarizes the parameters used for each experiments, as well as the accuracy

obtained, which is graphically presented in Fig. 5.1. The best results are obtained when the

neighbourhood size is 5 with a dictionary of 10 textons per class, with a 97.5% accuracy, which

is actually the same as when the neighbourhood size is 7 and the number of centroids is 20.
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Figure 5.1: Accuracy for the experiments on UdG Dataset

5.2 Regions of Interest Classification

In [41], an experiment on the San Francisco Database was performed using segmentations made

by hand in [14]. The segmentations corresponded to six different classes: Air, Building, Car,

Road, Vegetation, and Trunk. The objective was to classify each region into one of the classes.

The same experiment was proposed in this work, using the Markov Random Field (MRF)

classifier introduced in section 4.1. In this case, the Region of Interest (ROI), were segmented

by a clinician into four different classes: Kidney, Liver, Lung and Spleen. Table 5.2 presents the

number of slices of each organ for each patient.

Patient Kidney Liver Lung Spleen
04635 164 415 302 337
04636 155 370 167 -
04637 106 290 167 253
04638 88 299 175 182
04639 96 191 195 139

Table 5.2: Slices per organ for each patient

5.2.1 Experiments on Denoised Volumes

This section presents the results of a set of experiments, in which 3 volumes corresponding to

the 0 dose without Adaptive Iterative Dose Reduction 3D (AIDR3D) reconstruction were used

as a training, while 2 volumes with AIDR3D reconstruction, with noise intensities 0, 25, 50, 75

and 88 were used for testing.
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χ2 Distance

Following the same methodology as in the original paper by Varma & Zisserman, the χ2 distance

was used as a metric to compare 2D histograms and proceed to classify the ROIs. Fig. 5.2

illustrates the results for a neighbourhood of size 3. Fig. 5.2a corresponds to the instance

when the dictionary has 10 textons per class, while Fig. 5.2b illustrates the case for 20 textons.

Appendix B.1.1 presents the values corresponding to this graphs in Table B.1 and Table B.2.

From the graphs can be clearly seen that the use of more centroids decreases the accuracy of

the algorithm, specially for the kidney. One reason for this behaviour might be the introduction

of noisy textons to the dictionary, that leads to miss-classifications. It is also clearly seen that

the classification of lung tissue has the best results, scoring an accuracy of 100% on each case.

Moreover, kidney and spleen are also fairly differentiated from other tissues. The main problem

is then, to classify liver tissue, which is in most of the cases confused with spleen.
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Figure 5.2: Experiments on Denoised Volumes: χ2 Distance, Neighbourhood=3

Fig. 5.3 illustrates the same experiment, but using neighbourhoods of size 5. Table B.3 and

Table B.4, included in Appendix B.1.1, show the results for these experiments. Fig. 5.3a exhibits

the diagram for 10 textons per class, while Fig. 5.3b does the same for 20 centroids. Similarly as

in the previous case, better results are obtained when the dictionary has 10 centroids, as when

it has 20.

Comparing the size of the neighbourhood, from the experiments results can be established

that the use of a larger neighbourhood improves slightly the accuracy of the algorithm. This

might be due to the fact that a smaller neighbourhood is more sensitive to noise than a bigger

one, which leads to misclassification. In some cases however, results are very consistent, such as

in the case of the lungs, which always score 100% accuracy, while the liver always presents the

poorest performance, achieving no more than 65% in the best case.
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Figure 5.3: Experiments on Denoised Volumes: χ2 Distance, Neighbourhood=5

Euclidean Distance

Euclidean distance was proposed as an alternative metric to compare the distance between 2D

histograms. Fig. 5.4 illustrates the results for a neighbourhood of size 3, which corresponds to

the values presented in Table B.5 and Table B.6 in Appendix B.1.2.
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Figure 5.4: Experiments on Denoised Volumes: Euclidean Distance, Neighbourhood=3

The use of the Euclidean distance enhance the results for all the organs. The use of more

neighbours has a positive impact on the results as well, as can be seen in Fig. 5.5. When 10

centroids are used, the accuracy of all the organs (except liver) is above 90%, as illustrated in

Fig. 5.5a. The use of more centroids has proved to have a negative impact on the results, as it

happen when using the χ2 distance. Appendix B.1.2 shows this results in Table B.7 and Table

B.8.
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Figure 5.5: Experiments on Denoised Volumes: Euclidean Distance, Neighbourhood=5

5.2.2 Experiments on Noisy Volumes

This set of experiments, in contrast to the Experiments on Denoised Volumes presented in

Section 5.2.1, uses as a training 3 different volumes corresponding to the 0 dose with AIDR3D

reconstruction, while 2 volumes of doses 0, 25, 50, 75 and 88 without AIDR3D reconstruction

were used for testing.

χ2 Distance

Following the approach of the Experiments on Denoised Volumes, Fig. 5.6 illustrates the accuracy

obtained per organ for a neighbourhood of size 3. Appendix B.2.1 presents the values obtained

in Table B.9 and Table B.10, corresponding to Fig. 5.6a and Fig. 5.6b respectively.
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Figure 5.6: Experiments on Noisy Volumes: χ2 Distance, Neighbourhood=3
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Similarly as what occurred in the previous experiments, the use of more textons on each

class of the dictionary decreases the accuracy of the algorithm, except in the last experiment,

88 noise, where the use of a larger dictionary improves the accuracy. Even though most of the

organs accuracy decreases significantly when the noise increases, the lung classification remains

scoring 100%.

Fig. 5.7a presents the results for a neighbourhood of size 5, using 10 centroids 5.7a and 20

5.7b. The use of a larger neighbourhood increases the accuracy notably, specially for the noisiest

images. In this case, the use of more textons in the dictionary has only a positive impact on the

noisiest dataset (88). The accuracy values of these experiments can be found in Appendix B.2.1,

illustrated by Table B.11 and Table B.12.
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Figure 5.7: Experiments on Noisy Volumes: χ2 Distance, Neighbourhood=5

Euclidean Distance

The Euclidean distance was also included in this set of experiments. Fig. 5.8 illustrates the

results for a neighbourhood of size 3, using 10 (Fig. 5.8a) and 20 (Fig. 5.8b) textons per class on

the dictionary. Appendix B.2.2 shows the corresponding values in Table B.13 and Table B.14.

Similarly as what occurred in the experiments on Denoised Volumes, the use of the euclidean

distance enhanced the results, however, in this case the difference between both accuracies is

larger, achieving in some cases more than 30% difference, such as in the case of the liver with 88

noise. On the other hand, the accuracy of classifying the spleen tissue decreases considerably

using the euclidean distance, compared with the accuracy obtained using χ2 distance. The lungs

are consistent and achieve 100% in every experiment.

Fig. 5.9 shows the results obtained for a neighbourhood of size 5. Fig. 5.9a presents the

accuracy obtained using 10 textons per class in the dictionary and Fig. 5.9b illustrates the
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Figure 5.8: Experiments on Noisy Volumes: Euclidean Distance, Neighbourhood=3

results for 20 textons. The use of a larger neighbourhood improves the accuracy for all the

organs. Using 10 centroids, all the results are above 50%, which is an improvement with respect

to the χ2 results, specially for the noisiest datasets.
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Figure 5.9: Experiments on Noisy Volumes: Euclidean Distance, Neighbourhood=5

5.3 MRF vs. Statistical Methods

This section presents the results of the classification using statistical methods, following the

methodology described in section 4.2. Fig. 5.10 presents the results per organ, using statistical

methods, compared to the best results obtained using MRF with χ2 and euclidean distance, in

the Experiments of on Denoised Volumes. In Fig. 5.10a the results for the kidney are presented,
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where can be clearly seen that the MRF with euclidean distance presents better results than

the other methods. In Fig. 5.10b are illustrated the results for the liver, which presents similar

performance in the noisiest datasets. Similarly, the lungs are perfectly discriminated in the

three cases, as presented by Fig. 5.10c. Finally, the spleen presents similar results for the

three classifiers, with a slightly superiority of the χ2 distance, as can be seen in Fig. 5.10d. In

conclusion, when performing experiments of on Denoised Volumes, the three different approaches

presents similar performance, with the exception of the kidney, in which the use of the MRF

classifier outperforms the other results.
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Figure 5.10: Experiments on Denoised Volumes: Comparison

Fig. 5.11 presents the comparison for the Experiments of on Noisy Volumes. Fig. 5.11a

presents the results for the kidney, which shows clearly the superiority of the MRF methods over

the statistical ones. In the case of the liver, Fig. 5.11b illustrates how similar is the behaviour of

the three methods, however for the noisiest datasets, the euclidean distance overcomes the results

of the other methods. The lungs are very consistent for the MRF methods, in comparison with

the Experiments of on Denoised Volumes, however for the statistical methods, the performance

is very inferior, compared to the one obtained on the previous experiments, as Fig. 5.11c shows.
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Something similar happen with the spleen, which also decreases its performance, as illustrated

by Fig. 5.11d. In conclusion, we can see that in this type of experiments, the performance of

the statistical features decreases and it’s outperformed by the MRF methods.
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Figure 5.11: Experiments on Noisy Volumes: Comparison

5.4 Segmentation

This section presents the results obtained when carrying out the segmentation methodology

proposed in Section 4.3. Fig. 5.14, 5.15 and 5.16 illustrates the results of the experiments

described in Section 4.3.1. They demonstrated that the use of a larger neighbourhood with a

smaller dictionary size increases the dice coefficient obtained per class. It affects some organs

more drastically than others, as in the case of the kidneys, which performs very poorly when

the size of the neighbourhood is small. One reason for this behaviour might the influence that

the noise have in a small neighbourhood, which is reduced when a larger neighbourhood is used,

as there are more pixels to take into account.
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(a) Liver (b) Lung

Figure 5.12: Segmentations of large ROI

Fig. 5.17 presents the results corresponding to the approach described in Section 4.3.2, using

two different configurations: a neighbourhood of size 5 and one of size 7, with 10 textons per

class on the dictionary. The box plots shows better results for the larger neighbourhood, since

larger dice coefficients are achieved, however the difference is not very large and for some organs

such as lungs, the use of a neighbourhood of size 5 improves the results.

(a) Kidney (b) Spleen

Figure 5.13: Segmentations of small ROI

Fig. 5.18 presents the results obtained when performing the morphological operations

introduced in Section 4.3.3. The results shows that performing an erosion followed by a closing

improves the results, specially by increasing the minimum value in the kidneys and the spleen.

Fig. 5.19 illustrates the results for the experiments described in Section 4.3.4. The use of

an adaptive threshold improved the results in general, specially for the liver. The addition of
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morphological operations to those results however deteriorated drastically the results for the

lungs, but at the same time improved them for liver.

Fig. 5.20 and 5.21 exhibits the results when applying the approach proposed in Section 4.3.5.

The use of textons that belongs to the background in the dictionary was a right guess, however

it did not have the expected impact, since the background is too large and heterogeneous. The

use of a majority voting scheme had a negative effect on the dice coefficient obtained.

Fig. 5.12 illustrates an example of the segmentation of the largest organs, lungs and liver. It

can be seen from the figures that even though most of the area covered by the ROI is correctly

recognized, there also a large number of false positives that reduce the dice coefficient. The main

problem with lungs is the misclassification with background, while the liver is being confused

with other soft tissues, such as stomach. Fig. 5.13 on the other hand, presents the segmentation

results for the smallest ROI, kidney and spleen. In this case, there are also a considerable

number of false positives for the kidney image, but a large number of false negatives in the case

of the spleen, from voxels that are normally classified as liver.
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Figure 5.14: Neighbourhood=3, Threshold=1000
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Figure 5.15: Neighbourhood=5, Threshold=1000
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Figure 5.16: Neighbourhood=7, Threshold=1000

42



NBR_SIZE=5,TXT_DICT=10 NBR_SIZE=7,TXT_DICT=10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Dice Coefficient

kidneys
liver
lungs
spleen

Figure 5.17: Majority Voting Scheme
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Figure 5.18: Morphological Operations
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Figure 5.19: Adaptive Threshold
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Figure 5.20: Background Textons
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Figure 5.21: Background Textons using Majority Voting Scheme
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Chapter 6

Conclusions

6.1 Discussion

This study implemented and evaluated Markov Random Field (MRF) texture analysis for use

in Computer Tomography (CT) images. As presented in the literature review, there have been

quite a number of studies using texture features to diagnose diseases from medical imaging.

However, there has been some recent concern about applying the results from one institution to

another, due to variations in imaging techniques and feature measurement [7]. In this study

we focused on the effect on the texture measures of both the image noise itself and the noise

reduction algorithm. The results showed that the texture metrics were reassuringly robust to

the noise level and Adaptive Iterative Dose Reduction 3D (AIDR3D) noise reduction. In high

quality images the noise reduction had little effect on the detection accuracy, reducing it slightly

from 87.8% to 85.8%. In contrast, in noisy, lower dose datasets the noise reduction had a more

noticeable effect, improving accuracy from 75.1% to 84.5%. This results were compared to the

accuracy obtained when using statistical methods and the results showed that our method is

more robust when is used in noisy datasets.

The results also demonstrated the importance of the metric used to compare different

histograms. Varma & Zisserman proposed using the χ2 distance. The χ2 metric is used to

determine whether two histograms are samples from the same statistical distribution. However,

this is subtly different from a metric, such as the Euclidean distance, which indicates how

different two histogram distributions are. For this project, the latter type of metric seems more

appropriate, and indeed was shown to perform consistently better on these datasets.

Classification of individual pixels had poorer performance than region classification. In

general, the use of larger neighbourhoods, smaller dictionary sizes, morphological closing and

background textons presented the best results, however the segmented images still presented a

high rate of false positives. There are a number of reasons for this. The first is that calculating
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the class of a large region is much less prone to noise than for a single pixel. The second is that

pixel classification has to also account for background regions. The wide range of anatomical

variation outside the organs of interest was hard to represent sufficiently in a small texton

dictionary, and consequently there were a lot of false positives in the background region that

adversely affected the dice coefficient results.

6.2 Future Work

Further work can be undertaken to improve the classification and segmentation results, as well

as to evaluate more potential applications of this project.

The first and most obvious step is the use of 3D texton neighbourhoods. Studies involving

CT image and texture algorithms, such as the greylevel co-occurrence matrix, have shown a

small but significant improvement in accuracy using 3D regions. However, it is likely to be more

computationally expensive. Care also needs to be taken when analysing anisotropic volumes

(i.e. where the voxels are not cubic).

Another possible improvement is the inclusion of rotationally invariant features. This could

be implemented quite simply by including circularly shifted versions of the measured textons

in the dictionary. However, this was not a priority in this project, as the careful alignment

of patients for a CT scan means that textures can reasonably be expected to be consistently

orientated.

A more complex addition might be the use of a sparse modelling approach to find representa-

tive objects [6]. In summary, this approach consists in finding a few representative for a dataset

to form a dictionary, assuming that each data point can be expressed as a linear combination

of the representatives. The problem is formulated as a sparse multiple measurement vector

problem, solved via complex optimization.

Lastly, future work should evaluate the use of these features in differentiating healthy and

unhealthy tissue. This would have a lot of potential applications. However, it is also likely to be

much harder than differentiating organs, as the changes are likely to be more subtle.
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Appendix A

Datasets

A.1 Universitat de Girona (UdG) Dataset

(a) Sticks (b) Paper (c) Leaf (d) Sponge (e) Paper

(f) Cloth (g) Sponge (h) Brick (i) Sponge (j) Paper

(k) Walnut (l) Paper (m) Pasta (n) Pasta (o) Chickpeas

(p) Beans (q) Beans (r) Lentils (s) Rice (t) Cereal

Figure A.1: UdG Dataset: 20 different classes composed by 6 different samples each, captured
at 2 distances using 6 illuminant tilt angles.
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A.2 Toshiba Medical Visualization Systems (TMVS) Datasets

(a) 0 No AIDR3D (b) 25 No AIDR3D

(c) 50 No AIDR3D (d) 75 No AIDR3D

(e) 88 No AIDR3D

Figure A.2: TMVS Dataset without Adaptive Iterative Dose Reduction 3D (AIDR3D) recon-
struction: Five subjects, each with five simulated low doses: 0, 25, 50, 75 and 88.
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(a) 0 AIDR3D (b) 25 AIDR3D

(c) 50 AIDR3D (d) 75 AIDR3D

(e) 88 AIDR3D

Figure A.3: TMVS Dataset with AIDR3D reconstruction: Five subjects, each with five simulated
low doses: 0, 25, 50, 75 and 88.
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Appendix B

Regions of Interest Classification

B.1 Experiments on Denoised Volumes

B.1.1 χ2 Distance

Organ 0 25 50 75 88
kidney 88.04 86.96 87.5 87.5 86.41
liver 61.63 61.84 61.43 60.41 55.92
lung 100 100 100 100 100

spleen 93.46 93.77 92.83 93.15 92.21

Table B.1: χ2 Distance: Neighbourhood=3,Centroids=10

Organ 0 25 50 75 88
kidney 88.59 88.04 86.96 82.61 78.26
liver 56.53 56.53 57.55 56.73 51.02
lung 100 100 100 100 100

spleen 91.9 91.28 91.59 90.65 89.41

Table B.2: χ2 Distance: Neighbourhood=3,Centroids=20

Organ 0 25 50 75 88
kidney 91.3 92.39 90.76 91.3 89.13
liver 64.9 66.12 65.31 64.49 60.82
lung 100 100 100 100 100

spleen 96.23 96.54 96.23 96.23 95.28

Table B.3: χ2 Distance: Neighbourhood=5,Centroids=10
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Organ 0 25 50 75 88
kidney 88.59 87.5 86.41 79.89 73.37
liver 61.22 61.84 61.84 59.8 56.53
lung 100 100 100 100 100

spleen 95.6 95.6 94.97 94.34 93.4

Table B.4: χ2 Distance: Neighbourhood=5,Centroids=20

B.1.2 Euclidean Distance

Organ 0 25 50 75 88
kidney 94.57 92.93 94.02 94.02 88.59
liver 66.12 66.33 66.33 64.08 60.41
lung 100 100 100 100 100

spleen 94.08 94.08 93.15 92.83 93.15

Table B.5: Euclidean Distance: Neighbourhood=3,Centroids=10

Organ 0 25 50 75 88
kidney 94.57 94.57 95.65 94.57 94.57
liver 63.88 65.31 63.88 62.04 56.12
lung 100 100 100 100 100

spleen 91.59 91.59 91.59 91.59 89.72

Table B.6: Euclidean Distance: Neighbourhood=3,Centroids=20

Organ 0 25 50 75 88
kidney 98.91 98.91 98.91 97.83 97.83
liver 64.9 64.69 65.51 64.69 62.45
lung 100 100 100 100 100

spleen 94.65 94.34 94.34 94.34 93.4

Table B.7: Euclidean Distance: Neighbourhood=5,Centroids=10

Organ 0 25 50 75 88
kidney 92.39 92.39 92.39 90.22 83.15
liver 60.2 62.86 62.24 61.22 58.37
lung 100 100 100 100 100

spleen 92.14 92.14 93.08 93.08 92.14

Table B.8: Euclidean Distance: Neighbourhood=5,Centroids=20
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B.2 Experiments on Noisy Volumes

B.2.1 χ2 Distance

Organ 0 25 50 75 88
kidney 90.22 89.13 86.41 72.83 36.96
liver 68.98 68.78 62.24 54.69 21.43
lung 100 100 100 100 100

spleen 91.59 89.41 69.78 17.45 12.77

Table B.9: χ2 Distance: Neighbourhood=3,Centroids=10

Organ 0 25 50 75 88
kidney 80.98 78.8 72.28 37.5 15.22
liver 68.37 69.59 58.57 48.37 32.86
lung 100 100 100 100 100

spleen 85.98 79.75 43.93 19 12.15

Table B.10: χ2 Distance: Neighbourhood=3,Centroids=20

Organ 0 25 50 75 88
kidney 91.3 88.04 83.7 73.37 39.13
liver 61.43 59.8 54.29 52.65 38.16
lung 100 100 100 100 99.72

spleen 94.65 94.34 93.4 52.52 39.94

Table B.11: χ2 Distance: Neighbourhood=5,Centroids=10

Organ 0 25 50 75 88
kidney 85.33 76.63 63.04 28.26 15.76
liver 60.61 59.39 53.06 52.86 42.65
lung 100 100 100 99.72 99.45

spleen 95.6 94.65 93.71 70.13 82.7

Table B.12: χ2 Distance: Neighbourhood=5,Centroids=20
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B.2.2 Euclidean Distance

Organ 0 25 50 75 88
kidney 94.57 94.02 93.48 85.87 45.11
liver 70.82 74.08 65.31 55.71 52.65
lung 100 100 100 100 100

spleen 90.65 87.54 76.32 22.74 10.59

Table B.13: Euclidean Distance: Neighbourhood=3,Centroids=10

Organ 0 25 50 75 88
kidney 97.83 96.74 96.74 63.04 34.24
liver 77.55 70.82 59.59 57.96 78.78
lung 100 100 100 100 100

spleen 83.8 76.32 50.16 26.48 3.738

Table B.14: Euclidean Distance: Neighbourhood=3,Centroids=20

Organ 0 25 50 75 88
kidney 98.37 97.28 97.28 90.76 65.22
liver 59.8 57.35 55.1 54.9 54.08
lung 100 100 100 100 99.72

spleen 92.45 92.14 88.68 64.78 53.77

Table B.15: Euclidean Distance: Neighbourhood=5,Centroids=10

Organ 0 25 50 75 88
kidney 96.74 96.74 87.5 53.26 41.3
liver 61.22 58.98 55.51 53.88 58.78
lung 100 100 100 99.45 99.18

spleen 93.4 91.82 90.25 76.1 92.14

Table B.16: Euclidean Distance: Neighbourhood=5,Centroids=20
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