Classifying Estimated Corresponding Points by Delaunay Triangulation

Presented by

Elizabeth Vargas Vargas

Advisor

María Trujillo, Ph.D.

Content

- Stereo Vision
- Applications
- Correspondence Problem
- Objectives
- State of the Art
\square Proposed Approach
- Feature Points
- Initial Correspondences
- Delaunay Triangulation
- Constrains
- Classification
- Verification
- Results
- Conclusions

Stereo Vision

Stereo Images

Left

Right

3D Model

Reconstruction Algorithm

Applications
Laboratorio de Multimedia \cup Vision

Automotive

Military

Entertainment

Robotics

Industry

Space

Medical

Training

Correspondence Problem

Inverse problem

Occlusions

false-target problem

Textureless regions

State of the Art (I)

State of the Art (III)

- Establishing dense correspondence maps
- Allows estimating large displacements and subsequently taking into account motion/disparity discontinuities - Computationally efficient
- Image pairs are triangulated
- Triangles are
classified into matched
and unmatched
triangles
- A dense disparity map of the image is obtained

Estimation of

 large-amplitude motion and disparity fields: Application to intermediate view reconstruction

- Generative probabilistic model
- Bayesian approach
- 2D mesh via Delaunay triangulation

A Dense Stereo Matching Algorithm Based on Triangulation

Proposed Algorithm

Feature Points

Scale Invariant Feature Transform (SIFT)

- Invariant to image scaling and rotation
- Partially invariant to change in illumination and 3D camera viewpoint - Well localized in both the spatial and the frequency domains
- Reduce the probability of disruption by occlusion, clutter, or noise

Features from Accelerated Segment Test (FAST)

- High quality corner detector
- Implemented using machine learning
- Several orders faster than other corner detectors
- High levels of repeatability under large aspect changes and for different kind of features

del Valle

Initial Correspondences

Scale Invariant Feature Transform (SITF)

- The matching criteria for the best candidate match for each keypoint is found by identifying its nearest neighbour - The nearest neighbout is defined as the keypoint with the minimum Euclidean distance for the invariant descriptor vector

Features from Accelerated Segment Test (FAST)

- Block matching strategy using SDD (Sum of squared differences) of the corners descriptor
- The number of matches obtained for each stereo par is variable, but it is around 150 and 300

It is unique

Delaunay Triangulation

Delaunay Triangulation

It is not completely Delaunay

Constrained Delaunay Triangulation

Triangles Constrain

Original image

Threshold + closing + opening

Edges Constrain

Classification

Triangulation of a set of corresponding points

Classification criteria using the vertex number 5

Classification criteria using the vertex number 1

Classification criteria using the vertex number 7

Classification

Given a set of corresponding points, they are mapped into an undirected graph and corresponding points are classified as "correctly estimated" if and only if their graphs are isomorphic

Let G and G^{\prime} be a set of corresponding points, from the right and the left images respectively. A Delaunay triangulation produces a set of vertices and edges (V, A) and (V^{\prime}, A^{\prime}) respectively. A bijective function $f: V \rightarrow V^{\prime}$ is a graph isomorphism if:

$$
w, v, z \in A \leftrightarrow \phi(v), \phi(w), \phi(z) \in A^{\prime}
$$

That is, if f preserves the adjacency between vertices,
Thebijective function f is represented by the initial map of correspondences and the set of adjacent vertices.

Relaxed Condition

if left.numberOfVertex > 3 then
if right.vertex equal (left.vertex - 1) or right.vertex equal left.vertex then mark as correct estimated
else
mark as incorrect estimated
else
if right.vertex equal left.vertex then mark as correct estimated
else mark as incorrect estimated

Verification

Ground Truth Image

$$
\text { error }_{i, j}=\left|G T_{i, j}-\Delta x_{i, j}\right|
$$

$G T_{i, j}$: ground-truth disparity value at (i,j)
$\Delta x_{i, j}$: estimated disparity value at (i,j)

$$
\begin{aligned}
& \text { error > } 1 \text { : "bad match" } \\
& \text { error < } 1 \text { : "good match" }
\end{aligned}
$$

Datasets

Art

Books

Moebius

Cones

Reindeer

Dolls

Teddy

Results

Sensitivity

$$
\text { sensitivity }=\frac{t p}{t p+f n}
$$

Probability that is classified as "bad match",
Given that is really a "bad match"

Specificity

$$
\text { specificity }=\frac{t n}{t n+f p}
$$

Probability that is classified as "good match",
Given that is really a "good match"
tp: true positives
fp: false positives
tn: true negatives
fn: false negatives

Results: SIFT (I)

SIFT Algorithm Performance (Initial Matching vs Ground-Truth)

Dataset	Points Left	Points Right	Matches	Bad Matches	\% Bad Matches
Art	1167	1089	205	33	16,10
Books	823	904	401	51	12,72
Cones	1163	1147	467	61	13,06
Dolls	1462	1406	561	115	20,50
Laundry	1123	1124	263	95	36,12
Moebius	867	920	318	56	17,61
Reindeer	592	553	244	37	15,16
Teddy	844	881	328	133	40,55

Results: SIFT (II)

Sensitivity for SIFT

(r) = relaxed condition
(t) = triangles constrain

Slide 22
(e) = edges constrain

Specificity for SIFT

(r) = relaxed condition
(t) = triangles constrain
(e) = edges constrain

Results: Corners (I)

Corners Algorithm Performance (Initial Matching vs Ground-Truth)

Dataset	Points Left	Points Right	Matches	Bad Matches	\% Bad Matches
Art	985	986	164	72	43,90
Books	958	955	303	149	49,17
Cones	947	946	268	78	29,10
Dolls	950	948	280	85	30,36
Laundry	960	966	293	194	66,21
Moebius	963	970	213	63	29,58
Reindeer	948	955	201	58	28,86
Teddy	950	947	316	123	38,92

Results: Corners (II)

Sensitivity for Corners

(r) = relaxed condition
(t) = triangles constrain
(e) = edges constrain

Results: Corners (III)

Specificity for Corners

(r) = relaxed condition
(t) = triangles constrain
(e) = edges constrain

Conclusions

\square The use of all the recognized keypoints for the triangulation, adds noise to it
\square The classification algorithm presents better performance for the corners than for the SIFT keypoints, in terms of sensitivity, which is for our analysis the most representative measurement of quality. On the other hand, the specificity is higher for the SIFT algorithm
\square The classification algorithm exhibit the best performance in the corners feature points, where the percentage of initial bad matches is bigger than approximately 50\%. It means, that the algorithm presents high sensitivity (between 93% and 97%) when the initial matching is bad
\square The use of constrains contribute to the increment of specificity. However, it also decrements the sensitivity
\square The relaxed evaluation condition presented worked better for the corners features, because of the locations of the points

