
Classifying Estimated Corresponding
Points by Delaunay Triangulation

Elizabeth Vargas Vargas

Bachelor Thesis

Universidad del Valle

Escuela de Ingenieŕıa de Sistemas y Computación

Santiago de Cali, June 15, 2012



Classifying Estimated Corresponding
Points by Delaunay Triangulation

Elizabeth Vargas Vargas

Bachelor Thesis

To obtain the degree of

Ingeniera de Sistemas

Advisor: Maria Patricia Trujillo Uribe, Ph.D.

Universidad del Valle
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Abstract

Stereo vision has become in one of the most important research topics nowadays. There is a
large number of applications in the industry, that goes from searching robots to self-driving cars.
These applications work with an error tolerance, that could be improved in order to find more
applications in the industry, where accuracy is the most important factor.

The problem has not been solved, given that there are still many points that are incorrectly
classified as correspondences. Therefore, there are still many publications about the topic, with
the purpose of finding solutions free of error.

Stereoscopic vision means vision with two eyes, which implies that one feature in the 3-
Dimensional space is projected onto two planes. The challenge on stereo vision is reconstruct
the 3D point, by finding correspondence points in two projections, one from a left plane and one
for a right one. The major problem is misclassification, because there are many feature points that
may have some similarity.

An algorithm for classifying correspondences based on the Dalaunay triangulation is presented.
It is motivated for large misclassified correspondence points that affect the 3D reconstruction.



Chapter 1

Introduction

Finding corresponding points is useful in a very large number of human activities which benefit
directly from its non-intrusive character and also from the widespread use cameras have acquired
nowadays [7]. In the aerospace business, it is known the use of searching robots that are able to
explore the terrain on mars surface for example [16]. Additionally, companies like Google invest
millions in research related to self-driving cars [6], focusing on obstacle avoidance. In the health-
care sector, image registration is everyday more frequent in the diagnose stage [15], centering on
wound depth estimation, internal organs inspection and modeling. Application areas also include
entertainment (interactive games), industry (quality control), military (target tracking), robotics
(navigation), space (automatic planetary rover in unknown environments) and training (teleoper-
ation) [7].

With all these applications in mind, it is known that the stereo vision problem is important,
and finding true correspondences from both images worth it. However, the problem is not still
solved, because it is not always an easy task for some kind of images. For this reason, there are
written every year thousand of papers with different approaches.

This final career project presents a new approach based on the Delaunay triangulation for
classifying a set of correspondence points. Its performance and accurate are evaluated.

1.1 Problem Statement

Stereo Vision refers to the ability to infer information on the 3D structure, such as distance of a
scene to the camera using two or more images taken from different viewpoints. The calibration,
the correspondence and the reconstruction problems have to be solved in order to infer the 3D
structure of a scene. Of these, the most important and the most difficult task is the correspon-
dence problem and it has motivated an immense amount of research [7].

The correspondence problem consists in determining which point on the left image corresponds
to which point on the right one [33]. To do that, there have been employed different techniques
in order to find the corresponding points given two views. When the correspondence problem is
addressed, corresponding points may be inaccurately estimated: falsely matched or badly located.
Moreover, small inaccuracies in the estimated corresponding points may have a large impact on
the results of the 3D reconstruction [33].

The standard definition of computational vision is that it is inverse optic. The direct problem
- the problem of classical optics or of computer graphics - is to calculate the images of three-
dimensional objects [13]. Computational vision is confronted with inverse problems of recovering
surfaces from images. Much information is lost during the imaging process that projects a three-
dimensional world into two-dimensional arrays (images). As a consequence, vision must rely on
natural constraints, that is, general assumptions about the physical world, to derive an unambigu-
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ous output. This is typical of many inverse problems in mathematics and physics. A problem is
well posed when its solution (a) exists, (b) is unique, and (c) depends continuously on the initial
data [13]. It implies, that a small variation in the input (true disparity map), produces a large
impact on the output (estimated depth).

A great complication in correctly establishing correspondence is the well-known false-target
problem [7].Matching points can (in principle) be found at the intersection of the rays passing
through these points and the associated pupil centers (or pinholes, see Figure 1.1). Thus, when
a single image feature is observed at any given time, stereo vision is easy [4]. Assuming that all
six projections appear similar, it is not feasible to choose the correct pairs from all the possible
ones, as many consistent matching interpretations are plausible. For instance, in Figure 1.1, ignor-
ing transparency of objects, there are three physically consistent interpretations. In general, the
false-target problem refers to the fact that a given feature point in one image may match equally
well a number of points in the other image. Such ambiguities can not be resolved, unless further
information concerning the projections is provided [7].

Figure 1.1: Binocular fusion problem

Another important error source are occlusions, which have parts of the scene visible in one
image, but hidden in the other image. This is caused by cases where between a surface part of an
object and the camera, appears a part of another or the same object, but also because a part is out
of the field of one camera. As a result, the stereo matcher may get confused and assign a spurious
match. Such a mismatch may also have repercussions in the matching of other, non-occluded
points and affect neighbouring correspondences [7].

False matches are caused mainly by photometric differences between the images, i.e. illumi-
nation and contrast. Because the cameras view an object from different positions, the reflectivity
properties of its surfaces often give projections of different intensities. Also, if during the capturing
of the two images, the lighting conditions have changed, intensity variations of conjugate points
are very likely. Structural properties of the scene, such as repetitive patterns (e.g. a brick wall),
texture or large areas of constant intensity (e.g. surfaces with complete lack of markings and con-
stant shading) increase ambiguity in the matching process [7].

The problem is still open to proposals that improve the quality of the correspondences by
eliminating inaccuracies. To overcome the mentioned problems, this final career project analyses
the possibilities of using the Delaunay triangulation to classify the correspondences. The question
that need to be considered is whether the use of this approach . classifies correctly a set of initial
corresponding points as “good/bad matches” or not.

1.2 Proposed Solution

Delaunay triangulation has been widely used by many algorithms in different contexts including
block matching. Its uniqueness property makes it a useful tool for finding non-recurring solutions.

10



The proposed solution uses two different approaches, in order to classify a set of corresponding
points as correctly or incorrectly estimated. An overview of the algorithm is presented in 4.1.

The first approach is about triangulating the feature points of each image, and then compare
them in order to classify the correspondences. A matching is considered correct if a set of points
shape the same triangles in both images. The evaluation approach is described in 4.5. The second
approach consists in adding constrains to the triangulation based on the image edges. The criteria
established for building the constrains are explained in 4.4.

An algorithm in C++ was implemented and tested with several dataset in order to evaluate its
performance. Results are presented on the section 4.7.

1.3 Project Scope

The purpose of the project is to evaluate the pertinence of the use of the Delaunay triangulation to
classify a set of corresponding points. For this reason, the final product is not a software, otherwise
an evaluation of the accuracy of the proposed algorithm. Two approaches will be implemented, in
order to achieve the objective:

• A classification based on the Delaunay triangulation

• A classification based on a constrained Delaunay triangulation

1.4 Objectives

1.4.1 General Objective

Develop an approach to classify a set of corresponding points using the constrained Delaunay
triangulation.

1.4.2 Specific Objectives

• Select a robust algorithm to estimate corresponding points.

• Select an effective method to detect edges in order to provide them to the constrained De-
launay triangulation.

• Propose a strategy for classifying a set of corresponding points using the Delaunay triangu-
lation.

• Evaluate the effectiveness of the results, in order to find the best approach to obtain a set of
corresponding points free of errors.
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Chapter 2

Theoretical Background

2.1 Digital Images Representation

Images measure the quantity of light that infringes on a photosensitive device [33]. A image is
characterized by a two-dimensional array, where each element in the array is called a pixel (pic-
ture element) [14]. Digital images are represented by a numerical matrix, E, with N rows and M
columns. E(i, j) represents the image value at pixel (i, j) (i-th row and j-th column), and encodes
the intensity recorded by the photosensors of the CCD (Charged Coupled Device) array contribut-
ing to that pixel. E(i, j) is an integer in the range [0, 255] [33].

99 71 61 51 49
93 74 53 56 48
101 69 57 53 54
107 82 64 63 59
114 93 76 69 72
117 108 94 92 97
116 114 109 106 105
115 113 109 114 111
110 113 111 109 106
103 107 106 108 109

Figure 2.1: Gray scale image with a selected region and its correspondence matrix representation

The brightness of an image point can be represented by one byte, or 256 gray levels (typically
0 is black, 255 white). This is an adequate resolution of monochromatic (or gray-level) images and
is suitable for many vision tasks. Colour images require three monochromatic component images
(red, green, blue) and therefore three numbers [33]. As a result, a colour image is be represented
with a three dimensional matrix where each channel is represented by one matrix.

Figure 2.2: Color image and its three components: Red, Green, and Blue.
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2.2 Image Pre-Processing

In order to remove the noise presenting in the images, or to obtain a particular set of features,
there are some operations applied to the images before we apply the feature detection on them.
This section describes the pre-processing techniques using in the algorithm.

2.2.1 Convolution

The procedure of constructing a new array, the same size as the image and afterwards filling each
location of this new array with a weighted sum of the pixel values from the locations surrounding
the corresponding location in the image, using the same set of weights each time is known as linear
filtering [4].

The pattern of weights used for a linear filter is usually referred to as the kernel of the filter.
The process of applying the filter is usually referred to as convolution [4].

Given a filter kernel H, the convolution of the kernel with image F is an image R. The i, j’th
component of R are given by:

Rij =
∑
u,v

Hi−u,j−vRu,v (2.1)

2.2.2 Thresholding

The input to a thresholding operation is typically a grayscale image and the output is a binary
image representing the segmentation. The segmentation is determined by a single parameter known
as the intensity threshold. In a single pass, each pixel in the image is compared with this threshold.
If the pixel’s intensity is higher than the threshold, the pixel is set to white in the output. If it is
less than the threshold, it is set to black [23].

2.2.3 Morphological Operations

Morphological operators take a binary image and a structuring element as input and combine
them using a set operator (intersection, union, inclusion, complement). They process objects in
the input image based on characteristics of its shape, which are encoded in the structuring element.
The morphological operations used in our algorithm were:

• Erosion: The mathematical definition of erosion for binary images is the following: Con-
sidering that X is the set of Euclidean coordinates corresponding to the input binary image,
and that K is the set of coordinates for the structuring element. Let Kx represents the
translation of K so that its origin is at x. Then the erosion of X by K is simply the set of
all points x such that Kx is a subset of X [21].

• Dilation: The mathematical definition of dilation for binary images is: Considering that X
is the set of Euclidean coordinates corresponding to the input binary image, and that K is
the set of coordinates for the structuring element. Let Kx represents the translation of K
so that its origin is at x. Then the dilation of X by K is simply the set of all points x such
that the intersection of Kx with X is non-empty [20].

• Opening: Is defined as an erosion followed by a dilation using the same structuring element
for both operations [22].

• Closing: Is defined as a dilation followed by an erosion using the same structuring element
for both operations [19]
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2.3 Image Features

2.3.1 Interest Points

FAST Corners Detector

Corners are positions in the image containing rich visual information and can be found repro-
ducibly in different images of the same object. Recently, corners have also been used in object
recognition (where they are usually referred to as interest points): the regions surrounding interest
points contain discriminative information about which object classes are present [17].

FAST (Features from Accelerated Segment Test) is a high quality corner detector implemented
using machine learning. It is many times faster than other existing corner detectors. The FAST
detector also provides high levels of repeatability under large aspect changes and for different kind
of features [25].

SIFT Detector

The Scale-Invariant Feature Transform was first described by David Lowe’s in the ICCV 1999
conference paper [11] which also gives some more information on the applications to object recog-
nition. This method “transform an image into a large collection of local feature vectors, each of
which is invariant to image translation, scaling, and rotation, and partially invariant to illumina-
tion changes and affine or 3D projections”

The first phase identifies key locations in scale space by looking for locations that are maxima or
minima of a difference-of-Gaussian function. A feature vector is generated by using each point. The
vector describes the local image region sampled relative to its scale-space coordinate frame. The
resulting feature vectors are called SIFT keys. In Lowe’s implementation, each image generates on
the order of 1000 SIFT keys. This process that requires less than 1 second of computation time [11].

2.3.2 Edges

Edges are points in the image where brightness changes particularly sharply are often called. Edge
points are associated with the boundaries of objects and other kinds of meaningful changes” [4].
In edge detection the goal is to return a binary image where a non-zero value denotes the presence
of an edge in the image. They optionally also return other information such as the orientation and
scale associated with the edge [17].

Figure 2.3: Egg image and the detected edges
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There are various reasons for being interested in edges. “The contours of potentially scene ele-
ments like solid objects, marks on surfaces, and shadows, all generate intensity edges. Moreover,
image lines, curves and contours, which are often the basic elements for stereopsis, calibration,
motion analysis and recognition, are detected from chains of edges points. Finally, lines drawings
are common and suggestive images for humans” [33].

Edge detection in computer vision is typically done in three steps:

• Noise Smoothing: Suppress as much of the image noise as possible, without destroying
the true edges. In the absence of specific information assume the noise white and Gaussian.

• Edge Enhancement: Design a filter responding to edges; that is, the filter’s output is a
large at edge pixels and low elsewhere, so that edges can be located as the local maxima in
the filter’s output.

• Edge Localization: Decide which local maxima in the filter’s output are edges and which
are just caused by noise. This involves thinning wide edges to 1-pixel width (nonmaximum
suppression) and establishing the minimum value to declare a local maxima an edge (thresh-
olding). [33]

Canny Edge Detector

Canny operator was designed to be an optimal edge detector. It takes as input a gray scale im-
age, and produces as output an image showing the positions of tracked intensity discontinuities [24].

“The Canny operator works in a multi-stage process”[24]. The steps followed by the operator
are:

1. first of all the image is smoothed by Gaussian convolution,

2. then a simple 2-D first derivative operator is applied to the smoothed image to highlight
regions of the image with high first spatial derivatives,

3. edges give rise to ridges in the gradient magnitude image,

4. the algorithm then tracks along the top of these ridges and sets to zero all pixels that are
not actually on the ridge top so as to give a thin line in the output.

The values of the parameters, the width of the Gaussian kernel used in the smoothing phase,
and an upper and a lower threshold used by the tracker, could not be already estimated. They must
be obtained according to the nature of the images, that is, during the implementation process, in
order to obtain a high accuracy level on the detected borders.

2.4 A Brief Review of Stereo Vision

Stereo vision refers to the ability to infer information on the 3-D structure and distance of a scene
from two or more images taken from different viewpoints. From a computational point of view, a
stereo system must solve two problems. The first, known as correspondence, consist in determining
which item in the left eye corresponds to which item in the right one. The difficult part here is
that some parts of the scene are visible by one view only. Therefore, a stereo system must also be
able to determine the image parts that should not be matched. The second problem that a stereo
system must solve is reconstruction. The disparities between correspondence items of all the image
points form the so-called disparity map, which can be displayed as an image. If the geometry of
the stereo system is known, the disparity map can be converted to a 3-D map of the viewed scene
[33].
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Figure 2.4: Stereo system

The correspondence problem is then view as a search problem: “given an element in the left
image, we search for the corresponding elements in the right image” [33]. This requires two
decisions:

• which image element to match and,

• which similarity measure to adopt.

The calculations associated with stereo algorithms are often consider simpler when the images
of interest have been rectified, i.e., replaced by two projectively equivalent pictures with a common
image plane parallel to the baseline joining the two optical centers.

2.5 Delaunay Triangulation

“Let P be a set of points in the plane, and let = be a triangulation of P. Then = is a Delaunay
triangulation of P if and only if the circumcircle of any triangle of = does not contain a point of P
in its interior“[3].

Figure 2.5: Delaunay Circumcircles

The Delaunay triangulation has the following characteristics:

• “Any Delaunay triangulation of P maximizes the minimum angle over all triangulations of
P”[3].

• “The expected number of triangles created by the algorithm is at most 9n + 1 bein n the
number of points”[3].
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• “The Delaunay triangulation of a ser P of n points in the plane can be computed in O(n log n)
expected time, using O(n) expected storage”[3].

• It is unique.

A constrained Delaunay triangulation is a triangulation with constrained edges which tries to be
as much Delaunay as possible. The constrained edges are not necessarily Delaunay edges, therefore
the triangles of a constrained Delaunay triangulation do not necessarily satisfy the empty circle
property but they fulfill a lighter constrained empty circle property. Therefore, a triangulation is
considered constrained Delaunay if and only if the circumscribing circle of any facet encloses no
vertex visible from the interior of the facet [18].

17



Chapter 3

State of the Art

Along the chapter there are summarized some publications about the correspondence problem
and the Delaunay triangulation employment. Their advantages and disadvantages are discussed,
and it is provided information on computational complexity, practical realizations and applications.

3.1 Stereo Matching

Stereo vision is one of the most important topics on computer vision, therefore there is a lot of
literature on this subject. On the current section, are going to presented the most important
classification of the algorithms, and then are summarized the most important articles about it.

The first division of the stereo methods is based on the type of output disparity map (Figure
3.1). Dense disparity maps are the most desirable, because in them is determined for all or for
almost all the pixels the disparity values. On the contrary, sparse disparity maps have disparity
values determined just for selected image points. In most situations they are faster, but have
limited applications since there are missing values that has to be interpolated [2].

Stereo Methods

Dense Methods Sparse Methods

Figure 3.1: Diversity of stereo methods according to the output disparity map

Other possible classification is derived from the format of the signal taken for computation of
match values (Figure 3.2). There are methods where it comes directly from the intensity values,
whereas others transform intensity into other domains or compute some characteristic features
which are then used for matching [2].

A final classification could be determined by dividing the methods into two groups: local and
global methods (Figure 3.3). The first ones compute disparity values based only on the local
information around certain position of pixels, while global methods use all cost values in the opti-
mization process to determine disparity and occlusions [2].
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Stereo Methods

Direct Methods Indirect Methods

Intensity Based Feature Based
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Image Space

Figure 3.2: Diversity of stereo methods – division into direct methods that are based on bare
intensities and indirect ones which operate on transformed space

In the following subsections are presented some of the most characteristic matching methods,
as well as publications about their use.

3.1.1 Belief Propagation

The stereo problem is formulated in the probabilistic way in this approach, by means of Markov
random fields. The maximum a posteriori estimation is obtained by applying a Bayesian belief
propagation (BP) algorithm. BP executes a kind of message passing. This message is meant as a
probability that a receiver (a node in MRF) should exhibit disparity which is congruent with all
information already passed to it by a sender. The nodes are separated into high-confidence and
low-confidence ones. The entropy of a message from high-confidence nodes to low-confidence nodes
is smaller than in the opposite direction [2].

One implementation of this approach is presented in [31] where the stereo matching problem is
formulated as a Markov network and is solved using Bayesian belief propagation. This approach
gives a promising way for ill-posed problems because it treats it as an inference problem or finding
the “best guess” solution. For stereo matching, the idea is to infer scene structure S given images I.
The output from the Bayesian approach is not only a single solution but also a posterior probability
distribution P (S|I). The stereo Markov network consists of three couple Markov random fields
that model the following:

• A smooth field for depth/disparity (D), defined on the image lattice of the reference view.

• A line process for depth discontinuity (L), located on the dual of the image lattice and
represents explicitly the presence or absence of depth discontinuities in the reference view.

• A binary process for occlusion (O), to indicate occlusion regions in the reference view.

Using Bayes’ rule, the joint posterior probability over (D), (L), and (O) given a pair of stereo
images I = IL, IR, where IL, IR is the left (reference) and right images, respectively, is:

P (D,L,O|I) =
P (I|D,L,O)P (D,L,O)

P (I)
(3.1)
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Figure 3.3: Diversity of stereo methods – division into local and global methods

After eliminating the line process and the binary process by introducing two robust functions,
the belief propagation algorithm is applied to obtain the maximum aposteriori (MAP) estimation
in the Markov network.

There are two contributions in this article. First, stereo matching is formulated using three
MRF’s and subsequently estimate the optimal solution by a Bayesian Belief Propagation algorithm.
Second, it is proposed a probabilistic framework to integrate additional information into the stereo
algorithm.

3.1.2 Graph Cut

Methods from this group formulated a solution to the stereo problem as an energy functional. This
implies a computation of a maximum flow in graphs [2].

An application of this method can be found in [1]. This paper describes a dense stereo matching
algorithm for epipolar rectified images. The method applies colour segmentation on the reference
image. The basic assumptions are that disparity varies smoothly inside a segment, while disparity
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boundaries coincide with the segment borders. Disparity is modelled inside a segment by a planar
equation. Initial disparity segments are clustered to form a set of disparity layers, which are pla-
nar surfaces that are likely to occur in the scene. Assignments of segments to disparity layers are
then then divided by minimization of a global cost function. This cost function is based on the
observation that occlusions cannot be dealt with in the domain of segments.

In the first step, it is applied colour segmentation to the reference image. Given that the basic
assumption states that the disparity values inside a colour segment vary smoothly, it is important
that a segment does not overlap a disparity discontinuity. It is therefore safer to use overseg-
mention. The algorithm starts then by computing an initial disparity map using window-based
correlation. Once the initial disparity models are known, the objective is to identify those models
that represent the dominant depth surfaces of the scene, which are refered as layers.

Knowing the set of disparity layers, the job of the assignment step is to estimate which parts
of the images are covered by which layers as well as to identify occlusions. The problem was seen
as a labelling problem, that requires a cost function to fulfill its purpose. Therefore a novel cost
function is proposed. It is defined on two levels, one representing the segments and the other
corresponding to pixels:

C(f) = Tdata(f) + Tocclusion(f) + Tsegment(f) + Tmissmatch(f) + Tsmoothness(f) (3.2)

The basic idea is that a pixel has to be assigned to the same disparity layer as its segment, but
can as well be occluded. The cost function is then effectively minimized via graph-cuts.

The major contribution of the technique to the field of stereo computation lies in that it is shown
how region-based matching can be modelled in a graph-cut approach with explicit treatment of
occlusions. One important advantage of this algorithm, is that because of the assumptions, the
algorithm is capable of handling large untextured regions, estimating precise depth boundaries and
propagating disparity information to occluded regions, which are challenging tasks for conventional
stereo methods. In the experimental results is shown that the method produces good-quality
results, especially in regions of low texture and close to disparity boundaries.

3.1.3 Dynamic Programming

“The main idea of the methods from this group lies in division of the 2D search problem into a
series of separate 1D search problems on each pair of epipolar lines” [2].

An example of the use of this method can be found in [32]. The paper proposes a stereo match-
ing algorithm which employs an adaptive multi-directional dynamic programming (DP) scheme
using edge orientations. A new energy function is defined in order to consider the discontinuity
of disparity and occlusions, which is minimized by the multi-directional DP scheme. Chain codes
are introduced to find the accurate edge orientations which provide the DP scheme with optimal
multidirectional paths. The proposed algorithm eliminates the streaking problem of conventional
DP based algorithms, and estimates more accurate disparity information in boundary areas.

Given an image with size N x M and the disparity range is 0 ∼ D, exits a 3D (N x M x D) DSI
(disparity space image) for dynamic programming schemes. Disparities are usually estimated by
finding the shortest path in the DSI. Here was chosen a a path in DSI that has the same direction
as edge orientation, and find the shortest path in the DSI using an energy function. It consists of
data term, smoothness one for homogeneous area, discontinuity one for edge area, and occlusion
one as:

E(dp) = OpD(p, dp) + Es(dp) + Ed(dp) + (1−Op)Eo(dp, dn) (3.3)
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where Op is the binary indicator of occlusion. dp is the disparity of pixel p, dn are neighboring
disparities with respect to edge information.

The edge information used is the boundary area of objects. In this article, it is presented a new
scheme to obtain edge orientations using chain codes. Edge pixels are labelled using 8 directional
chain codes and classify them into three types such as single, link, and branch. The chain codes
helps to find exact starting and ending pixels on the edges.

The Dynamic Programming based stereo matching algorithms have presented better perfor-
mances than the usual block matching based methods because this one can exploit the correlations
of neighboring disparities.

3.1.4 Cooperative Algorithm

In [34] is presented a cooperative stereo algorithm that uses global constrains to find a dense map.
Uniqueness and continuity are assumed. In disparity space it is built a three-dimensional array of
match values, where each element of the array corresponds to a pixel in the reference image and
a disparity, relative to another image. It is constructed an update function of match values for
use with real images. This function generates continuous and unique values by diffusing support
among neighboring match values and by inhibiting values along similar lines of sight. The initial
match values that were obtained by pixel-wise correlation, are used to retain details during each
iteration. Occluded areas are identified after the match values have converged.

The cooperative algorithm can be summarized as follows:

1. Prepare a 3D array, (r, c, d): (r, c) for each pixel in the reference image and d for the range
of disparity.

2. Set initial match values L0 using a function of image intensities, such as normalized correla-
tion or squared differences.

3. Iteratively update match values Ln using (5), until the match values converge.

4. For each pixel (r, c), find the element (r, c, d) with the maximum match value.

5. If the maximum match value is higher than a threshold, output the disparity d, otherwise
classify it as occluded.

To probe the effectiveness of the algorithm, the authors provide experimental data from many
synthetic and real scenes. The resulting disparity maps are smooth and occlusions are detected.
The resulting disparity maps calculated by using real stereo images with ground-truth disparities
are used for quantitative comparison with other methods. It was also made a comparison with the
multi-baseline method and the multi-baseline plus adaptive window method.

3.2 Delaunay Triangulation

Delaunay triangulation has been widely used as a tool for feature correspondence, region corre-
sponding and block matching. It is the main tool for the proposed algorithm, therefore it worth
to show the state of the art in utilization to the correspondence problem. Along this section are
presented some articles about its applications and the obtained results.

One of the most influential articles for this project is “Estimation of large-amplitude motion
and disparity fields: Application to intermediate view reconstruction” [9]. In the paper is described
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a method for establishing dense correspondence between two images in a video sequence or in a
stereo pair by combining feature matching with Delaunay triangulation. In the proposed approach:

1. feature points are found using a simple intensity corner detector

2. correspondence pairs between two images are found by maximizing cross-correlation over a
small window

3. the Delaunay triangulation is applied to the resulting points, and a dense vector field is
computed by planar interpolation over Delaunay triangles

4. the Delaunay triangles are divided whenever the displacement vectors within a triangle do
not allow good intensity match

The approach has several advantages: it permits to estimate large displacements and subse-
quently take into account motion/disparity discontinuities and is at the same time very efficient
computationally compared to a typical multi-resolution block matching. Initial results are very
promising; the method produces high-quality intermediate views for natural (complex) stereoscopic
image sequences. However, the results depend on the presence of texture in the images; the method
works well in sequences with strong textures.
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Chapter 4

Proposed Approach

The flowchart presents the main overview of the proposed algorithm that is going to be described
in detail along the chapter. According to the classification presented on section 3.1, the suggested
approach could be classified as a sparse, indirect and local method.

Right ImageLeft Image

Feature
Extraction

Feature
Extraction

Left Fea-
ture Points

Right Fea-
ture Points

Matching

Delaunay
Triangulation

Delaunay
Triangulation

Left Tri-
angulation

Right Tri-
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Correspondences

Matches
shape

the same
triangles

Incorrect
estimated

Correct
estimated

Verification
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Figure 4.1: Overview of the proposed approach

Figure 4.1 shows a survey of the proposed algorithm. The steps that are going to be presented
on the following sections could be summarized as follows:

1. The algorithms input is a couple of images, that represent a left and a right view from the
same scene. A detailed description of the input images could be found on the section 4.1.
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2. A initial set of feature points is computed and matched using two different approaches: SIFT
keypoints and FAST corners. This part of the procedure is described in the sections 4.2 and
4.3.

3. Using the keypoints that were matched, it is built a Delaunay triangulation for each stereo
image based. In one of the algorithms approaches are included some constrains, that are
explained in detail in section 4.4.

4. Based on the triangulation created on the previous stage, the matches are classified with the
criteria illustrated in 4.5.

5. The result is compared with a “gold standard” represented in the ground-truth disparity
map as described in 4.6.

The algorithm was implemented in C++ using g++ compiler version 4.4.3. Additionally, it
was used the library OpenCV (Open Source Computer Vision) version 2.3.1 for the image process-
ing and Delaunay Triangulation. For the Constrained Delaunay Triangulation algorithm was used
the library (Computational Geometry Algorithms Library) version 4.0. The algorithm for corners
detection and matching was written in MATLAB version 7.12.

4.1 Stereo Images

The datasets used to test the algorithm were provided from Middlebury Stereo Datasets available
on [28]. In total were used 8 of them.

Figure 4.2: Employed datasets

The first dataset, published in [27] consists of high-resolution stereo sequences with complex ge-
ometry and pixel-accurate ground-truth disparity data. The ground-truth disparities are acquired
“using a novel technique that employs structured lighting and does not require the calibration of
the light projectors”. Because we are testing a two-view stereo algorithm, the two reference views
were used. The images are rectified, which means that all image motion is entirely horizontal.
There were used the quarter-size (450 x 375) versions.

The second dataset was published in [26, 8] “Each dataset consists of 7 views taken under three
different illuminations and with three different exposures. Disparity maps are provided for views
1 and 5. The images are rectified and radial distortion has been removed”. There were used the
dataset in third-size (width: 447 or 463, height: 370).
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4.2 Feature Points

The proposed approach is classified as a local method that uses feature matching, for this reason,
it was necessary to determine a initial set of features that will be matched. Therefore, we opted
for the use of two algorithms from the state of the art: SIFT (Scale Invariant Feature Transform)
and FAST (Features from Accelerated Segment Test).

4.2.1 Scale Invariant Feature Transform

In order to classify estimated point correspondence by Delaunay triangulation, it is necessary to
define a set of initial corresponding points, that are going to be classified. For each one of the both
images on the datasets, the resulting keypoints were calculated when applying the SIFT algorithm.
Using Lowe’s implementation provided in [10], the images presents not only the keypoints, but also
the magnitude and the direction of the vector of features. Keypoints are presented with subpixel
precision. In Figure 4.3 are presented both teddy images, with the corresponding keypoints.

Figure 4.3: Example of one pair of images after applying the SIFT algorithm.

The most important characteristics from this approach are presented from the author in [12]
and could be summarized as follows:

• The features are invariant to image scaling and rotation, and partially invariant to change in
illumination and 3D camera viewpoint.

• They are well localized in both the spatial and frequency domains, reducing the probability
of disruption by occlusion, clutter, or noise.

• The algorithm generates large numbers of features that densely cover the image over the full
range of scales and locations.

• A typical image of size 500x500 pixels will give rise to about 2000 stable features (however
this number depends on both image content and choices for various parameters)

4.2.2 Features from Accelerated Segment Test

In order to detect corners, it was used the Computer Vision System Toolbox provided by MATLAB.
The function vision.CornerDetector provides the performance for this task, allowing the change in
some parameters. In our particular situation, the detection was implemented by using a method
of local intensity comparison: FAST [25]. It detects around 1000 corners using the datasets that
were presented already. Figure 4.4 presents the corners detected for the Teddy stereo par.
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In [25] the most important characteristics of the corners algorithm are presented. The advan-
tages are that it is many times faster than other existing corners detectors and it has high levels
of repeatability under large aspect changes and for different kind of features. However, it is not
robust to high level of noise, it can not respond to 1 pixel wide lines at certain angles, when the
quantization of the circle misses the line and it is depended on a threshold.

Figure 4.4: Example of one pair of images after applying the FAST algorithm.

4.3 Initial Correspondences

In order to provide a initial set of correspondences, there are used two different algorithms, one
for each set of features. For the SIFT algorithm, it is also provide an algorithm for matching SIFT
keypoints in [10] that is used to generate the initial set of correspondences in our implementation.
For the FAST corners, the correspondences are obtained by using a function provided by MATLAB.

4.3.1 Scale Invariant Feature Transform

According to David Lowe in [12], the matching criteria for the the best candidate match for each
keypoint is found by identifying its nearest neighbour in the database of keypoints from training
image. The nearest neighbour is defined as the keypoint with minimum Euclidean distance for the
invariant descriptor vector. Even though, many features from an image will not have any correct
match in the training image because they arise from background clutter or were not detected in
the training image.

For the Teddy dataset, the resulting image is presented in the Figure 4.6

In [12] are presented the most remarkable features from the matching algorithm:

• The keypoint descriptors are highly distinctive, which allows a single feature to find its correct
match with good probability in a large database of features.

• In a cluttered image, many features from the background will not have any correct match in
the database, giving rise to many false matches in addition to the correct ones.

• The correct matches can be filtered from the full set of matches by identifying subsets of
keypoints that agree on the object and its location, scale, and orientation in the new image.
The probability that several features will agree on these parameters by chance is much lower
than the probability that any individual feature match will be in error.
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Figure 4.5: Example of one pair of images after matching

• Each cluster of 3 or more features that agree on an object and its pose is then subject to
further detailed verification. First, a least-squared estimate is made for an affine approxima-
tion to the object pose. Any other image features consistent with this pose are identified,
and outliers are discarded. Finally, a detailed computation is made of the probability that
a particular set of features indicates the presence of an object, given the accuracy of fit and
number of probable false matches. Object matches that pass all these tests can be identified
as correct with high confidence.

4.3.2 Features from Accelerated Segment Test

In order to match the detected FAST corners, it was used a method provided by the Computer
Vision System Toolbox from MATLAB. First of all, the feature representation from the corners are
extracted by using the extractFeatures method. The resulting extracted points from both images
are matched by using the function matchFeatures. The metric specified for this function was SDD
(Sum of squared differences) and the match threshold was 0.2. Additionally, given that the input
images are rectified, it was checked the condition that the correspondence points have the same x
coordinate. The number of matches obtained for each stereo par is variable, but it is around 150
and 300.

Figure 4.6: Example of one pair of images after matching the FAST corners
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4.4 Constrains

The proposed approach assumed that image edges could provide information to the Delaunay tri-
angulation indicating the way in which the feature points are related.

The first constrain focus on grouping the points such that triangulation is applied to group
of points and not to all of them. This criteria is presented on the Figure 4.7 where the red and
green circles are the pixels of interest and the gray region represents the pixels labeled as edges.
Considering that there is an edge between both points, the criteria establish that the points must
be triangulated in different groups.

Figure 4.7: Triangles constrain

In order to do that, it process the image, in order to obtain a binary image where the main
contours could be identified. First of all a threshold to the image by using the Otsu algorithm was
applied. Afterwards it was applied the close and open morphological filters. Figure 4.8 illustrates
the resulting images on each stage for the Teddy dataset.

Figure 4.8: (a) Binary image after applying Otsu threshold. (b) Resulting image from the closing
operation. (c) Resulting image after the opening filter

The openCV function for contours extraction is finally applied to the resulting image. Because
of the big number of unnecessary contours on an image, it was applied a classification to them:
contours with more than 1000 points, as well as contours with less than 100 were eliminated. After-
wards, the keypoints are assigned to one contour, in order to triangulate just the points belonging
to the same contour. For each keypoint, it is calculated the distance to each contour, by using
the function pointPolygonTest implemented in OpenCV, which retrieves the minimum Manhattan
distance from the point to the contour (a positive value, if the point is inside the contour, and a
negative value if is not). The point assigned to the contour with the minimum distance (or to the
contour where is inside). Figure 4.9 illustrates the estimated contours and posterior classification
by presenting an approximation of each contour by using a bounding box.
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Figure 4.9: Polygons approximation

The second constrain is based on the idea that points belonging to the same contours, must
have an edge in the triangulation. Therefore the detailed edges are using in this situation. Figure
4.10 shows this idea by presenting two keypoints, blue and purple, that belong to the same contour.
The dark gray pixels represents the image edges and the light gray represents contour pixels, that
is, pixels that are not labeled on the image, but that illustrates that edges, despite they are not
continuous, belong to the same contour. The orange pixel, even thought it belongs to an edge, it
does not belong to the same contour that the blue and purple pixels, therefore, it must be an edge
between the blue and the purple pixel but not with the orange one. Given the big number of edges
presented on the image, and the number of points located in each contour, it is also required that the
points are not separated for more than 5 pixels between each other horizontally as well as vertically.

Figure 4.10: Edges constrain

4.5 Classification

The correspondence obtained in the matching stage is classified by using the Delaunay triangula-
tion. It is assumed, than given two correspondences points, they must be ”correctly estimated“
(i.e. they represents same feature point in both images) if and only if they shape the same triangle
in both stereo images, implying that they have the same adjacent vertices in both images. We
assume that two vertices are considered the same, if they belong to the initial correspondence
points set. The matches that do not satisfy this condition, are label as ”incorrectly estimated“.

Considering a triangulation as a undirected graph, we say that correspondences points are
considered ”correctly estimated“ if and only if their graphs are isomorphic.
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Figure 4.11: Example of one pair of stereo images after apply the Delaunay Triangulation

Definition 1 Being G and G′, with a set of vertices and edges (V,A) and (V ′, A′) respectively.
We say that a bijective function φ: V → V ′ is a graph isomorphism if:

w, v ∈ A⇔ φ(v), φ(w) ∈ A′ (4.1)

That is, if φ preserves the adjacency between vertices [5].

In our algorithm, the bijective function φ is represented by the initial map of correspondences.
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Figure 4.12: Triangulation subset

Figure 4.11 presents a sample triangulation after applying Delaunay Triangulation. It is impor-
tant to emphasize that the triangulation was done in a first instance with all the points provided
by the SIFT algorithm, however those points added noise to the triangulation, so it was necessary
to discard them. The triangulation was then done only with the matching points, obtaining better
results.

The subset of triangles highlighted with red are going to be used as a sample to explain in de-
tail the classification criteria. Figure 4.12 represents the graphs from left and right triangulations
respectively. Vertices are labelled with the numbers 1 to 7 and the one with the same number
represents a correspondence, which is also illustrated with a dashed line.

Lets consider the vertex number 5, its correspondences represented in the Figure 4.13 and its
adjacent vertex 2, 4 and 6. According to the evaluation criteria, the matching between the vertex
number 5 would be labeled as ”correctly estimated”, given that they have exactly the same adja-
cent vertex on the left and right triangulations.

31



1

2
3

4

5

6

7

1

2
3

4

5

6

7

Figure 4.13: Classification criteria for the vertex number five
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Figure 4.14: Classification criteria for the vertex number one

Now consider the vertex number 1, its correspondences represented on the Figure 4.14 and its
adjacent vertices 2 and 3. In the triangulation of the right stereo image, the correspondence vertex
has three adjacent vertices: 2, 3 and 4. Even though that they have two common vertices (2 and
3), the matching is labeled as “incorrectly estimated“ because the vertices are not exactly the same
on both images, therefore they do not shape the same triangles.

The last case that could be presented is illustrated by Figure 4.15 where the initial correspon-
dences has been changed. In this situation, the vertex number 7 is going to be considered, which
has edges with the vertex number 3, 4 and 6. In the right triangulation, the corresponding vertex
has also three adjacent edges. However, the vertex number 3 on the left stereo image is not an
adjacent vertex on the right image, because in its position is vertex number 2 and they are not
correspondent. Therefore, the matching between the vertices number 7 is labeled as “incorrectly
estimated“.
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Figure 4.15: Classification criteria for the vertex number seven

The explained criteria is used for the constrained classification as well. The only difference be-
tween both triangulations is that for unconstrained triangulation the triangulations are subdivided

32



by groups, however it does not affect the proposed evaluation. The kind of triangulation obtained
is illustrated on the Figure .

Figure 4.16: Triangulation obtained for the teddy stereo par after applying the first constrain

4.6 Verification

It is necessary to compare the obtained results with a ”gold standard” in order to evaluate its
accuracy, therefore it is used the ground-truth of the image for this purpose. In combination with
the stereo images, each dataset provides the true disparity map.

In the dataset published in [27] “Disparities are encoded using a scale factor 4 for gray levels
1 .. 255, while gray level 0 means unknown disparity. Therefore, the encoded disparity range is
0.25 .. 63.75 pixels” [29]. In the same way, in the dataset published in [26, 8] “ In the third-size
versions, the intensity values of the disparity maps need to be divided by 3” [30]. Figure 4.17
shows an example of the ground-truth disparity map from the Teddy stereo par.

Figure 4.17: Ground Truth image for the Teddy stereo par

For each correspondence calculated in the initial matching, it is calculated the disparity value
represented by the absolute difference of both x coordinates. This value, is compared with the
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ground-truth by using the absolute error equation. The error for the element (i, j) is calculated
using the following formula:

errori,j = |groundtruthi,j −∆xi,j | (4.2)

groundtruthi,j represents the value obtained from the ground-truth disparity map and ∆xi,j
is the absolute difference between the x coordinate from both correspondence points. For error
value bigger than 1, the correspondence is labeled as “bad match”, otherwise is considered a “good
match”.

4.7 Results

After testing the proposed algorithm with the datasets, it was made some analysis about the quality
of the obtained results as well as the algorithm behaviour for the different inputs. A “confusion
matrix“ is generated for both features. The algorithm classifies the correspondence as ”incorrectly
estimated“ and ”correctly estimated“ according to the criteria explained in 4.5, meanwhile the
comparison with the ground-truth arrange them as ”good match“ or ”bad match“. The indicators
from this matrix represents the following information:

• True positives (tp): The algorithm classifies the match as ”incorrectly estimated”, and
the comparison with the ground-truth classifies it as “good match”.

• False positives (fp): The algorithm classifies the match as ”incorrectly estimated“, but
the comparison with the ground-truth classifies it as a ”good match“.

• False negatives (fn): The algorithm classifies the match as ”correctly estimated”, but the
comparison with the ground-truth classifies it as a ”bad match“.

• True negatives (tn): The algorithm classifies the match as ”correctly estimated”, and
the comparison with the ground-truth classifies it as a ”bad match“.

Based on those indicators, it is calculated the following. In a perfect algorithm performance,
all of this values would be 100%:

• Sensitivity: Is the probability that a matching is a ”incorrectly estimated“, given that is a
”bad match“.

• Specificity: Is the probability that a matching is a ”correctly estimated“, given that is a
”good match“.

• Positive Predictive Value (PPV): Percentage of ”incorrectly estimated“ that were iden-
tified well, from the total of ”incorrectly estimated“.

• Negative Predictive Value (NPV): Percentage of ”correctly estimated“ that were iden-
tified well, from the total of ”correctly estimated“.

4.7.1 Scale Invariant Feature Transform

The SIFT algorithm, in agreement with the information provided by the author, generates between
500 and 1000 keypoints for each image of the stereo par, and from those points, around 200 are
matched. The percentage of “bad matches“ in the initial set of correspondences varies between
12% and 36%. The less number of ”bad matches“ was obtained by the dataset books, while the
worst one by the dataset teddy. The information of the algorithm is presented on the Table 4.1.

After applying the proposed algorithm with no constrains to the points generated with SIFT,
Tables 4.2 and A.1 were created (The Tables with the first group of indicators can be found on the
Appendix A). There is presented the information in a ”confusion matrix“. The most remarkable
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Table 4.1: SIFT algorithm performance

Dataset Points Left Points Right Matches Bad Matches % Bad Matches
Art 1167 1089 205 33 16,10

Books 823 904 401 51 12,72
Cones 1163 1147 467 61 13,06
Dolls 1462 1406 561 115 20,50

Laundry 1123 1124 263 95 36,12
Moebius 867 920 318 56 17,61
Reindeer 592 553 244 37 15,16

Teddy 844 881 328 133 40,55

result is the sensitivity of the dataset art because is the highest one. However, the value is just
80%, which is still low for the algorithm performance. In general, the unconstrained triangulation
presents in this set of matching a poor result, because the values of sensitivity are not higher
than 80%, which means, that there are many ”bad matches” that are not considered ”incorrectly
estimateds“. On the other hand, the specificity value, even though is not so high, presents an
acceptable value, given that the existence of ”good matches“ that are consider ”incorrectly esti-
mateds“ is not so critical in our algorithm.

Table 4.2: Unconstrained classification Confusion matrix I

Dataset Sensitivity(%) Specificity(%) PPV(%) NPV(%)
Art 81,82 51,16 24,32 93,62

Books 68,63 70,86 25,55 93,94
Cones 50,82 63,30 17,22 89,55
Dolls 62,61 54,26 26,09 84,91

Laundry 70,53 52,38 45,58 75,86
Moebius 51,79 54,96 19,73 84,21
Reindeer 64,86 41,55 16,55 86,87

Teddy 57,63 55,02 21,94 85,55

The first constrain was added to the triangulation, in order to evaluate its pertinence. Af-
terwards a new ”confusion matrix“ was built, which is presented in the Tables 4.3 and A.2. In
general, the sensitivity decreased for most datasets while the specificity increased. The reason, is
that there are some edges ”missing“ in comparison with the unconstrained triangulation, and some
of them were not supposed to be there, decreasing the number of false positives (which increases
the specificity) and some had to be there, increasing the number of false negatives (which decreases
the sensitivity).

The second constrain was applied to the triangulation and the results are presented on the Ta-
bles 4.4 and A.3. The constrain presents a really bad performance for half of the datasets, because
not only the sensitivity but also the specificity. However, for the others improves the sensitivity in
comparison with the previous versions of the algorithm, decreasing the specificity at the same time.

The algorithm, not only in the unconstrained version, but also in the constrained one, tends
to present a huge number of false positives. The reason, is that one pair labelled as a ”incorrectly
estimateds“ makes that the pairs around them (the adjacent vertices in the triangulation graph)
are also labelled the same because of the missing edges. It means, that there is an error propaga-
tion, which decrease the specificity. In order to improve this, it was proposed another evaluation
method for both algorithms, which is more flexible.
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Table 4.3: Triangles constrained classification Confusion matrix I

Dataset Sensitivity(%) Specificity(%) PPV(%) NPV(%)
Art 75,76 55,23 24,51 92,23

Books 68,63 70,86 25,55 93,94
Cones 42,62 71,67 18,44 89,26
Dolls 58,26 60,54 27,57 84,91

Laundry 64,21 54,76 44,53 73,02
Moebius 46,43 62,21 20,80 84,46
Reindeer 49,00 40,91 79,03 15,00

Teddy 64,41 55,76 24,20 87,72

Table 4.4: Edges constrained classification Confusion matrix I

Dataset Sensitivity(%) Specificity(%) PPV(%) NPV(%)
Art 60,61 29,65 14,18 79,69

Books 41,18 42,00 9,38 83,05
Cones 32,79 39,90 7,58 79,80
Dolls 76,52 10,31 18,03 63,01

Laundry 87,37 20,24 38,25 73,91
Moebius 67,86 27,48 16,67 80,00
Reindeer 67,57 18,84 12,95 76,47

Teddy 67,80 19,70 15,63 73,61

First of all, the proposed evaluation was that, being n the number of edges from a matched
point, evaluate that the correspondent points have n − 1 equal vertices, if and only if n > 3.
However, this evaluation decreased so much the sensitivity value for the Teddy dataset, where it
was initially tested. Therefore, the value of n was increased, until the sensitivity and specificity
values were acceptable. The final condition was that n > 8 and it was tested for all the datasets.
This results are presented on the Tables 4.5 and A.4. In general, the specificity value increased,
but the sensitivity value decreased considerably for some datasets like art.

4.7.2 Features from Accelerated Segment Test

The FAST algorithm provides nearly 1000 keypoints on each stereo par. However, only a small
portion of those points, around 300 is matched. The percentages of the bad matches is higher in
comparison with the SIFT algorithm, and it is remarkable for the datasets books and laundry
that have 49,17% and 66,21%. The complete information is summarized in the Table 4.6.

The results after the application of the unconstrained triangulation are presented on the Tables
4.7 and B.1 (The Tables with the first group of indicators can be found on the Appendix B) . The
values of sensitivity are higher than the ones for the SIFT points. However, the specificity is at
the same time lower than with the other set of keypoints. For the datasets books and laundry
is specially high the sensitivity value: 93,29% and 97,42% respectively. It could be inferred then,
that the algorithm has a better performance, when the initial set of correspondences has around
50% of ”bad matches“.

Afterwards, the first constrain was applied, and the results were similar to the case of the
SIFT points. A table with the results could be find in 4.8 and B.2. While the specificity value
incremented for most datasets (for books there was no change), the sensitivity decremented for
some of them, and for others keep equal.

The second constrain was applied, and as a result, a large number of matches were labelled
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Table 4.5: Unconstrained classification with a ”relaxed condition” Confusion matrix I

Dataset Sensitivity(%) Specificity(%) PPV(%) NPV(%)
Art 63,64 55,81 21,65 88,89

Books 58,82 76,29 26,55 92,71
Cones 45,90 70,69 19,05 89,69
Dolls 57,39 58,74 26,40 84,24

Laundry 63,16 57,14 45,45 73,28
Moebius 50,00 60,31 21,21 84,95
Reindeer 59,46 47,83 16,92 86,84

Teddy 52,54 62,08 23,31 85,64

Table 4.6: FAST algorithm performance

Dataset Points Left Points Right Matches Bad Matches % Bad Matches
Art 985 986 164 72 43,90

Books 958 955 303 149 49,17
Cones 947 946 268 78 29,10
Dolls 950 948 280 85 30,36

Laundry 960 966 293 194 66,21
Moebius 963 970 213 63 29,58
Reindeer 948 955 201 58 28,86

Teddy 950 947 316 123 38,92

as ”incorrectly estimated“, it implies, that the sensitivity increased for most of the datasets, but
at the same time the specificity decrease to values around 10%. Tables 4.9 and B.3 presents the
obtained results.

The new evaluation criteria explained in the last section was also tested in the FAST algorithm.
For this kind of features the results were better than for the SIFT feature points. For the half
of the datasets the sensitivity keeps equal, meanwhile the specificity raised around two or three
percent. Tables 4.10 and B.4 presents the results.

4.8 SIFT vs FAST

In the process of the initial set of points selection, the first choice was to use the Sift Invariant
Feature Transform, as a set of beginning feature points. However, after testing the proposed al-
gorithm, the result was not the expected, even tough many datasets and constrains were used.
Therefore, it was decided to change the initial set of features for FAST corners. As was presented
in the last section, the result got better.

The SIFT feature points have been used in the literature in many applications, providing
excellent results, and for this reason it was the first choice considered for the proposed algorithm.
However, the points generated by it, generates points that are inside the objects and not in the
edges, like FAST corners do. For the triangulation building, it produces vertex triangulated with
“interior” feature points, but not with remarkable features like “corners”, which are more relevant
in the stereo correspondences. Therefore, a big number of false positives is generated, decreasing
the sensitivity and hence the algorithm performance.
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Table 4.7: Unconstrained classification Confusion matrix I

Dataset Sensitivity(%) Specificity(%) PPV(%) NPV(%)
Art 70,83 25,00 42,50 52,27

Books 93,29 23,38 54,09 78,26
Cones 70,51 46,32 35,03 79,28
Dolls 80,00 44,62 38,64 83,65

Laundry 97,42 25,25 71,86 83,33
Moebius 84,13 43,33 38,41 86,67
Reindeer 87,93 27,97 33,12 85,11

Teddy 78,86 34,20 43,30 71,74

Table 4.8: Triangles constrained classification Confusion matrix I

Dataset Sensitivity(%) Specificity(%) PPV(%) NPV(%)
Art 63,89 31,52 42,20 52,73

Books 93,29 23,38 54,09 78,26
Cones 71,79 51,05 37,58 81,51
Dolls 67,06 62,05 43,51 81,21

Laundry 95,88 39,39 75,61 82,98
Moebius 68,25 49,33 36,13 78,72
Reindeer 77,59 35,66 32,85 79,69

Teddy 78,86 36,79 44,29 73,20

4.9 Triangulation

Independent of the kind of input set of initial feature points, the quality of the classification was
tested. 500 points were randomly chosen from the left image of the teddy dataset and based on the
ground-truth disparity map, the right corresponding points were chosen. The results are presented
on the Tables 4.11 and C.1. It is remarkable, that according to the analysis presented in the last
sections, the triangulation does not present good performance, when the number of initial “bad
matches” is small.

According to the results obtained in the previous section, it was assumed that the performance
of the algorithm is related to the initial set of chosen points. One important reason for this as-
sumption is that Delaunay Triangulation depends from the distance of a vertex to its neighbours.
Therefore, it was calculated the distance from each vertex to its adjacent vertices, and the results
are presented in the Tables 4.12 and 4.13.

In Table 4.12 can be observed that the distances between the points and the vertices that
are labelled as “Incorrect classified” are always larger than distances between the one labelled
as “Correctly estimated”. A similar behaviour is presented for the FAST corners, however, the
values are very close between each other for the datasets where the best algorithm performance is
achieved. A new hypothesis was referred, based on this fact. The factor that could influence this
change is the deformation suffered from the objects given by the position of the cameras. It causes
that points that are visually correspondent, are labeled as “incorrectly estimated”.

4.10 Algorithm Performance

The performance of the algorithm according to its runtime was evaluated. The program was exe-
cuted on a machine with the processor AMD Athlon(tm) X2 Dual-Core QL-65 (2.1GHz, 1MB L2
Cache) and 3GB of RAM memory. The time measurement was done by using the command time
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Table 4.9: Edges constrained classification Confusion matrix I

Dataset Sensitivity(%) Specificity(%) PPV(%) NPV(%)
Art 90,28 9,78 43,92 56,25

Books 91,28 13,64 50,56 61,76
Cones 82,05 11,58 27,59 61,11
Dolls 92,94 9,74 30,98 76,00

Laundry 93,81 24,24 70,82 66,67
Moebius 88,89 4,67 28,14 50,00
Reindeer 87,93 15,38 29,65 75,86

Teddy 83,74 11,92 37,73 53,49

Table 4.10: Constrained classification with a ”relaxed condition” Confusion matrix I

Dataset Sensitivity(%) Specificity(%) PPV(%) NPV(%)
Art 69,44 28,26 43,10 54,17

Books 92,62 24,68 54,33 77,55
Cones 70,5 50,53 36,91 80,67
Dolls 77,65 47,18 39,05 82,88

Laundry 97,42 27,27 72,41 84,38
Moebius 82,54 46,00 39,10 86,25
Reindeer 87,93 31,47 34,23 86,54

Teddy 78,86 38,34 44,91 74,00

from Ubuntu version 10.04. Results are presented on the Table 4.14 and 4.15, where the runtime
is expressed in minutes (m) and seconds (s).
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Table 4.11: Triangles constrained classification Confusion matrix I

Dataset Sensitivity(%) Specificity(%) PPV(%) NPV(%)
Art - 52,00 0,00 100,00

Books 0,00 52,10 0,00 99,58
Cones 50,00 52,01 0,38 99,58
Dolls 66,67 52,72 0,76 99,58

Laundry 75,00 53,63 1,12 99,57
Moebius 60,00 53,74 1,12 99,13
Reindeer 50,00 52,83 1,14 98,73

Teddy 71,43 53,75 1,85 99,13

Table 4.12: Distance Vertices SIFT points

Dataset Incorrect Left Incorrect Right Correct Left Correct Right
Art 41,5014 40,5149 27,1347 27,4006

Books 36.5893 35.1679 19.0444 19.0759
Cones 32,396 32.0308 23.3873 23.2421
Dolls 25.9198 25.6324 22.6723 22.5702

Laundry 36.4967 37.7258 25.1747 25.8179
Moebius 35.8318 35.1869 23.7902 23.7454
Reindeer 34.4418 34.6294 23.8409 23.9347

Teddy 35,0916 36,369 25,316 25,4032

Table 4.13: Distance Vertices FAST

Dataset Incorrect Left Incorrect Right Correct Left Correct Right
Art 45.9654 45.8604 33.3795 33.0938

Books 27.8345 27.5849 37.7912 37.5622
Cones 34.2913 35.0061 31.9205 31.8214
Dolls 36.0264 37.5633 31.0209 30.9548

Laundry 30.4673 29.6956 36.8481 35.6139
Moebius 45.3322 38.7913 31.9513 31.9211
Reindeer 37.0303 35.7755 36.3115 35.6

Teddy 31,043 30.2301 27,998 27.6946

Table 4.14: Program runtime with the SIFT points

Dataset Unconstrained Triangles Constrain Edges Constrain
Art 0m3.522s 0m0.703s 0m30.183s

Books 0m22.649s 0m24.073s 1m34.225s
Cones 0m38.740s 0m2.529s 2m41.956s
Dolls 1m9.766s 0m2.835s 4m38.767s

Laundry 0m7.223s 0m0.591s 0m49.141s
Moebius 0m11.806s 0m0.653s 1m6.720s
Reindeer 0m5.610s 0m0.728s 0m24.481s

Teddy 0m12.565s 0m2.242s 1m10.704s
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Table 4.15: Program runtime with FAST

Dataset Unconstrained Triangles Constrain Edges Constrain
Art 0m1.970s 0m0.523s 0m18.123s

Books 0m11.913s 0m10.655s 0m54.179s
Cones 0m8.151s 0m8.234s 0m53.973s
Dolls 0m9.181s 0m0.546s 1m7.226s

Laundry 0m9.850s 0m0.671s 0m59.391s
Moebius 0m4.663s 0m0.469s 0m31.748s
Reindeer 0m4.027s 0m0.550s 0m17.340s

Teddy 0m3.894s 0m1.470s 1m6.373s
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Chapter 5

Conclusions

5.1 Conclusions

• The use of all the recognized keypoints for the triangulation, adds noise to it, incrementing
the number of matches that are incorrectly classified. Therefore, the analysis was done by
only triangulating the matches points.

• The classification algorithm presents better performance for the FAST corners than for the
SIFT keypoints, in terms of sensitivity, which is for our analysis the most representative
measurement of quality. On the other hand, the specificity is higher for the SIFT algorithm,
given that less points are recognizing as ”bad matches“, and therefore, according to the
evaluation criteria, the number of false positives decrease. It means, that the more ”bad
matches“ that are correctly classified, the more ”good matches“ that are incorrectly classified,
because of the evaluation criteria used, where one bad match affects directly the neighbours
points.

• The classification algorithm exhibit the best performance in the FAST corners feature points,
where the percentage of initial bad matches is bigger than approximately 50%. It means, that
the algorithm presents high sensitivity (between 93% and 97%) when the initial matching is
bad.

• The use of constrains contribute to the increment of specificity, given that not all the matching
points are triangulated together, reducing the number of false positives. However, it also
decrements the sensitivity, because for some points that are ”bad matches“, there are missing
edges, generating a false negative.

• The relaxed evaluation condition presented worked better for the FAST corners features,
because of the locations of the points. For the SIFT algorithm, there are many internal
points, for this reason, the new evaluation criteria only decrease the sensitivity. In the FAST
corners situation, the criteria presents the same sensitivity and higher specificity for the half
of the datasets, while for the others the specificity increase, but the sensitivity decrease.

5.2 Future Research

The project opens the possibility to continue the research about the use of the Delaunay Triangu-
lation as a classification tool for a set of correspondence points. The future research could be then
be oriented to:

• Propose a new kind of constrains, different that edges, like colour, texture, etc. that con-
tribute to create a triangulation, that improve the classification quality, increasing the number
of classified as ”incorrect bad matches and decreasing the number of classified as “correct“
good matches.
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• Identify a new evaluation criteria, that increase the specificity, but at the same time the
sensitivity, improving the classification performance.
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Appendix A

Scale Invariant Feature Transform

A.1 Unconstrained Classification

Table A.1: Unconstrained classification Confusion matrix II

Dataset Bad Matches Good Matches tp fp fn tn
Art 111 94 27 84 6 88

Books 137 264 35 102 16 248
Cones 180 287 31 149 30 257
Dolls 276 285 72 204 43 242

Laundry 147 116 67 80 28 88
Moebius 147 171 29 118 27 144
Reindeer 145 99 24 121 13 86

Teddy 155 173 34 121 25 148

A.2 Constrained Classification: Triangles

Table A.2: Triangles constrained classification Confusion matrix II

Dataset Bad Matches Good Matches tp fp fn tn
Art 102 103 25 77 8 95

Books 137 264 35 102 16 248
Cones 141 326 26 115 35 291
Dolls 243 318 67 176 48 270

Laundry 137 126 61 76 34 92
Moebius 125 193 26 99 30 163
Reindeer 124 120 98 26 102 18

Teddy 157 171 38 119 21 150
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A.3 Constrained Classification: Edges

Table A.3: Edges constrained classification Confusion matrix II

Dataset Bad Matches Good Matches tp fp fn tn
Art 141 64 20 121 13 51

Books 224 177 21 203 30 147
Cones 264 203 20 244 41 162
Dolls 488 73 88 400 27 46

Laundry 217 46 83 134 12 34
Moebius 228 90 38 190 18 72
Reindeer 193 51 25 168 12 39

Teddy 256 72 40 216 19 53

A.4 Relaxed Evaluation Condition

Table A.4: Constrained classification with a ”relaxed condition” Confusion matrix II

Dataset Bad Matches Good Matches tp fp fn tn
Art 97 108 21 76 12 96

Books 113 288 30 83 21 267
Cones 147 320 28 119 33 287
Dolls 250 311 66 184 49 262

Laundry 132 131 60 72 35 96
Moebius 132 186 28 104 28 158
Reindeer 130 114 22 108 15 99

Teddy 155 173 31 102 28 167
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Appendix B

Features from Accelerated
Segment Test

B.1 Unconstrained Classification

Table B.1: Unconstrained classification Confusion matrix II

Dataset Bad Matches Good Matches tp fp fn tn
Art 120 44 51 69 21 23

Books 257 46 139 118 10 36
Cones 157 111 55 102 23 88
Dolls 176 104 68 108 17 87

Laundry 263 30 189 74 5 25
Moebius 138 75 53 85 10 65
Reindeer 154 47 51 103 7 40

Teddy 224 92 97 127 26 66

B.2 Constrained Classification: Triangles

Table B.2: Triangles constrained classification Confusion matrix I

Dataset Bad Matches Good Matches tp fp fn tn
Art 109 55 46 63 26 29

Books 257 46 139 118 10 36
Cones 149 119 56 93 22 97
Dolls 131 149 57 74 28 121

Laundry 246 47 186 60 8 39
Moebius 119 94 43 76 20 74
Reindeer 137 64 45 92 13 51

Teddy 219 97 97 122 26 71
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B.3 Constrained Classification: Edges

Table B.3: Edges constrained classification Confusion matrix II

Dataset Bad Matches Good Matches tp fp fn tn
Art 148 16 65 83 7 9

Books 269 34 136 133 13 21
Cones 232 36 64 168 14 22
Dolls 255 25 79 176 6 19

Laundry 257 36 182 75 12 24
Moebius 199 14 56 143 7 7
Reindeer 172 29 51 121 7 22

Teddy 273 43 103 170 20 23

B.4 Relaxed Evaluation Condition

Table B.4: Constrained classification with a ”relaxed condition” Confusion matrix I

Dataset Bad Matches Good Matches tp fp fn tn
Art 116 48 50 66 22 26

Books 149 154 138 116 11 38
Cones 149 119 55 94 23 96
Dolls 169 111 66 103 19 92

Laundry 261 32 189 72 5 27
Moebius 133 80 52 81 11 69
Reindeer 149 52 51 98 7 45

Teddy 216 100 97 119 26 74
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Appendix C

Triangulation Performance

C.1 Unconstrained Classification

Table C.1: Unconstrained classification for 500 random points Confusion matrix II

Dataset Theoretical Bad Matches Found Bad Matches tp fp fn tn
Art 0 260 0 260 0 240

Books 1 260 0 260 1 239
Cones 2 260 1 259 1 239
Dolls 3 264 2 262 1 235

Laundry 4 269 3 266 1 230
Moebius 5 269 3 266 2 229
Reindeer 6 264 3 261 3 233

Teddy 7 270 5 265 2 228
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