IMPACT OF MICROPHONE ARRAY CONFIGURATIONS ON ROBUST INDIRECT 3D ACOUSTIC SOURCE LOCALIZATION

Elizabeth Vargas, Keith Brown, Kartic Subr

University of Edinburgh

ICASSP 2018

Acoustic Source Localization

- 1. Record acoustic signals using a microphone array
 - 2. Calculate time difference of arrivals (TDOA)
- 3. Calculate the position using geometric formulae (optimization)

Locating The Source In 3D

Using a microphone array, we calculate Time Difference of Arrivals (TDOA) before we can estimate the acoustic source location

QUESTION #1: Can localization be accurate and fast at the same time?

Microphone Arrays For Acoustic Source Localization

QUESTION #2: How does the microphone configuration affect localization accuracy?

Simulated Source Locations

Noise added to Time Difference of Arrivals (TDOA)

$$\eta \sim \mathcal{N}\left(0, \frac{\sigma}{100} \frac{\|\mathbf{s} - \mathbf{O}\|}{c}\right)$$

Localization Relative Error

$$\operatorname{error}(\%) = \frac{\|\mathbf{s} - \tilde{\mathbf{s}}\|}{\|\mathbf{s} - \mathbf{O}\|} * 100$$

Wheel and Spiral Configurations Are More Robust

Simulated Source Locations

Noise added to Time Difference of Arrivals (TDOA)

$$\eta \sim \mathcal{N}\left(0, \frac{\sigma}{100} \frac{\|\mathbf{s} - \mathbf{O}\|}{c}\right)$$

Localization Relative Error

$$\operatorname{error}(\%) = \frac{\|\mathbf{s} - \tilde{\mathbf{s}}\|}{\|\mathbf{s} - \mathbf{O}\|} * 100$$

Higher Errors Observed With Ring Configuration

100% noise for a 2m by 2m room with 3 different configurations spanning the same

Using Real Data

We tested both Multilateration and Steered Response Power (SRP)

Short Range Localization

Mid Range Localization

Facing The Microphone Array

Mid Range Localization

What Happened To The Speed?

Using a microphone array, we calculate Time Difference of Arrivals (TDOA) before we can estimate the acoustic source location

How Many Microphone Pairs To Use?

Using 2556 Microphone Pairs

Using 100 Microphone Pairs

Conclusions

QUESTION #1: Can localization be accurate and fast at the same time?

Yes it can! Direct optimization yields errors similar to the Steered Response Power (SRP) method with <u>6 times less</u> <u>computation</u>

QUESTION #2: How does the microphone configuration affects the localization accuracy?

Circular arrays are the least desirable configuration