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Abstract—Accurate estimation of Time-Difference of Arrivals
(TDOAs) is necessary to perform accurate sound source localiza-
tion. The problem has traditionally been solved by using methods
such as Generalized Cross-Correlation, which uses the entire
signal to accurately estimate TDOAs. However, this could pose a
problem in distributed sensor networks in which the amount of
data that can be transmitted from each sensor to a fusion center
is limited, such as in underwater scenarios or other challenging
environments. Inspired by approaches from computer vision,
in this paper we identify Scale-Invariant Feature Transform
(SIFT) keypoints in the signal spectrogram. We perform cross-
correlation on the signal using only the information available at
those extracted keypoints. We test our algorithm in scenarios
featuring different noise and reverberation conditions, and using
different speech signals and source locations. We show that our
algorithm can estimate Time-Difference of Arrivals (TDOAs)
and the source location within an acceptable error range at a
compression ratio of 40 : 1.

Index Terms—microphone arrays, time difference estimation,
signal compressed encoding

I. INTRODUCTION

The literature on estimation of Time-Difference of Ar-

rivals (TDOAs) is rich with a variety of approaches. One of

the most common methods is Generalised Cross-Correlation

(GCC), which is used to find the TDOA in a microphone

array [1]. Methods based on cross-correlation are classified

into two groups: ones that use a pair of microphones, and

ones that draw on the redundancy among the microphones

in the array. The first group includes the Smoothed Coher-

ence Transform (SCOT) [2] and Generalized Cross-Correlation

Phase-Transform (GCC-PHAT) [3] techniques, which are an

extension of the cross-correlation into the frequency domain

using a spectral normalization parameter. The second group

of methods uses a spatial correlation matrix (MCCC) to de-

termine the TDOA values that minimize the cross-correlation

between each pair of signals. The most common of these

methods is MUltiple SIgnal Classification (MUSIC) [4], which

uses eigenvectors to estimate the TDOA.

Estimating TDOAs across a distributed sensor network

is of increasing relevance as decentralised ad-hoc devices

become more and more widespread. In such situations, the

sensors need to exchange information to estimate the TDOAs.

For example, to estimate TDOA using GCC would require

transmission of the entire signal, or at the least a down-

sampled version (which will lead to temporal quantisation). In

scenarios in which the communications bandwidth is limited,

or in which there are constraints on the amount of data

that can be transmitted, approaches based on the full signal

information are not very useful. Typical scenarios include

underwater sensors [5], inexpensive ad-hoc mobile networks

with energy constraints [6], and cases in which a high-speed

communications network is either denied or unavailable (for

example, disaster zones). Simon et al. [7] have developed

an algorithm that relies on event detection of the signals in

order to decide which parts of the signals to transmit. The

authors transmit 1.1% of the raw signal, but they limited

their experiments to a single scenario under specific noise

and reverberation conditions. Similarly, Fuyong et al. [8]

present a compression algorithm tested using compression

ratios between 4 : 1 and 8 : 1. Additionally, there are authors

who focus on sensor networks on low-bandwidth localization

in [9], [10]; however, these are active sensing methods, in that

sensors may emit calibration signals.

Previous studies have used different methods that involve

feature extraction from the audio signals, including music

identification [11], [12] and alignment of unsynchronized

meeting recordings [13]. The most popular of these is known

as audio fingerprinting [14], commonly used for music iden-

tification. It uses the signal spectrogram to select spectral

peaks, provided that their power spectral amplitude is above

a given threshold. These peaks are grouped into pairs to form

a landmark, which is indexed using a hashing function. A set

of these landmarks combines to characterize a song. Audio

fingerprinting is used to perform self-localization in an ad-

hoc microphone array in [15]. The problem in this instance is

to localize sensors rather than sound sources, so the sources

are placed in end-fire locations (i.e. points that lie on a straight

line between two microphones, excluding the points that lie

between the microphones) to guarantee a maximum TDOA.

In contrast to existing work that performs peak detection

based on thresholding, we propose to detect audio landmarks

using the Scale-Invariant Feature Transform (SIFT), a common

approach in computer vision. Although there is evidence

in the literature that authors have previously used SIFT on

spectrograms [16]–[18], this is the first time to the best of our



knowledge that such an approach has been applied with a focus

on data compression. In this paper, we present an approach

based on estimating certain specific samples of the signal to

be transmitted so as to estimate the delay using GCC. We use

the SIFT algorithm to extract keypoints in the spectrogram,

which is treated as an image.

Our main contributions in this paper are:

• Determining the signal keypoints to be transmitted to

obtain an accurate TDOA estimation, at lower data rates

or improved accuracy as against GCC solutions.

• Demonstrating the robustness of the proposed technique

to different noise and reverberation conditions.

• Comparison of the proposed technique with another data-

driven approach, namely audio fingerprinting.

II. METHODOLOGY

The proposed approach is based on Fig. 1, in which keypoint

extraction occurs at the sensor-head. These keypoints are

then communicated to a fusion center, which may either

be a centralised node, or simply another sensor node. The

communications channel is assumed to be low-bandwidth,

such that minimal communication is desirable to ensure low-

latency in the full localisation system. The sensors considered

in this paper are microphones, but could naturally be any

passive transducer, such as hydrophones, or RF.

The sensors si and sj measure signals, mi and mj . The

proposed algorithm for estimating TDOA, for that pair of

microphones, consists of the following key steps:
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Fig. 1. Overview of the system architecture.

1) At the Sensor-Head: Calculate the spectrograms, m̃i and

m̃j at each microphone, from the recorded signals mi and

mj . The dimension of each spectrogram is F by T , where

F is the number of rows corresponding to frequencies

and T is the number of columns corresponding to time.

We determined the optimum parameters for calculating

the spectrogram were window size = 256, overlap = 204

and the final number of sampling points in the discrete

Fourier transform = 1024;

2) At the Sensor-Head: Calculation of the Scale-Invariant

Feature Transform (SIFT) [19] on the normalized spec-

trogram magnitude, in order to detect n keypoints from

each spectrogram. We create a vector of keypoints, fi

and ti for the i-th microphone. The kth keypoint has

coordinates (fk, tk), which corresponds to the time-

frequency location at which the keypoints are detected.

The values that will be transmitted are integers (encoded

in 32 bits in order to keep high precision) and we only

need to transmit the t−coordinates. It was found that

adding in the frequency information did not improve

the Time-Difference of Arrival (TDOA) relative error.

Therefore, the total number of data samples that need

to be transmitted to the fusion center is n × 32. We

experimented with the number of keypoints that need to

be transmitted in order to obtain an acceptable margin of

error in the Time-Difference of Arrival (TDOA). In light

of this, we selected keypoints with the highest energy

frequency coefficients, i.e. points that belong to rows of

the spectrogram in which the sum of coefficients at key

points is large. We selected k-rows each time, where k

varies between 0.1 and 1;

3) At the Fusion Center: After the data is transmitted, two

new vectors, m̂i and m̂j, of the same size as mi and

mj are created at the fusion center. We are assuming

that all the sensors are synchronised and therefore started

recording at the same instant. We can map keypoint

locations to vectors by pre-calculating the times that

correspond to the t-coordinates. The vector is filled with

1’s in indices where a SIFT keypoint was detected and

with 0’s otherwise;

m̂i(l) =

{
1 if l ∈ ti

0 otherwise
(1)

4) At the Fusion Center: Calculation of Generalised

Cross-Correlation (GCC) (defined by the ⋆ operator)

between both vectors in the time domain. Since the cross-

correlation is now on a binary vector, there is no need for

the spectral normalisation as in PHAT.

τdelay = argmax
t

((m̂i ⋆ m̂j)(t)) (2)

III. EXPERIMENTAL RESULTS

We performed experiments using speech signals from the

TIMIT database [20] and simulated environments by means of

the image-source method [21]. We simulated two microphones

in a linear array, separated by a distance of 4 metres and

sampled at 16kHz. The simulated room has a size of 25m

× 3m × 12m.

Since Time-Difference of Arrival (TDOA) is in the order of

milliseconds for some source locations and centiseconds for

others, it is necessary to standardize the error in order to make

a fair comparison among source positions. Using the Ground

Truth (GT), the relative error is computed using the TDOA

estimation error in Equation 3. Similarly, we use the same

principle to estimate the Direction of Arrival (DOA) relative

error in Eq. 4.

tdoa error(%) =
‖tdoa− gt‖

‖gt‖
∗ 100 (3)
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(a) 40 : 1 compression (b) 55 : 1 compression (c) 90:1 compression

Fig. 2. SIFT keypoints (indicated in red) in the signal spectrogram, for different compression ratios. For each spectrogram, a patch (white rectangle) is
selected and magnified at the upper right corner to provide a clearer visualization of the SIFT keypoints. This illustrates how the selected SIFT features are
not necessarily spectrogram peaks and how our features differ from the peak picker approaches.

As previously mentioned, the compression ratio was varied

in order to determine how much compression we can achieve

while obtaining a reasonable TDOA relative error. We used the

subsampling strategy presented in Sec. II, where we selected

keypoints with the highest energy frequency coefficients, i.e

points that belong to rows of the spectrogram in which the

sum of coefficients at key points is large. Fig. 2 shows the

spectrogram SIFT keypoints for different compression ratios.

Fig. 3 illustrates the TDOA relative error with respect to

compression ratio. In this experiment, the source was located

at a DOA of 45°. Fig. 3a shows the error for an environment

free of noise and reverberation using the proposed method

and compares it with an approach in which compression is

achieved by subsampling the signal. Since subsampling the

signal increases the error dramatically even for low compres-

sion ratios, we decided to use a logarithmic scale on the Y-

axis. Fig. 3b shows the relative error for a non-reverberant

environment for different levels of noise. For a signal with

SNR 20dB the TDOA error remains below 100%.
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Fig. 3. TDOA Relative Error achieved for different compression ratios for a
source located at DOA 45°. The figure of the left shows the TDOA relative
error for our algorithm compared with a baseline in which the signal is
compressed by subsampling. We used the logarithmic scale on the Y-axis
given that the error for the subsampling approach is much higher than our
error. The right-hand side of the figure shows the TDOA Relative Error for
a noise-free signal and for signals with various SNR values. To estimate the
relative error for each compression ratio, we used 100 simulations.

Fig. 4 shows how noise and reverberation separately affect

the compression ratio. We calculated the minimum value of

compression that produced a TDOA relative error smaller
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Fig. 4. Maximum compression when the TDOA relative error ≤
5%, 10%, 50% for a source located at DOA 45° for different values of noise
and reverberation. In 4(a), white Gaussian noise of −10 dB, 0 dB, 10 dB, 20
dB, 30 dB and 40 dB signal-to-noise ratio per sample was added to the original
signal. For 5% and 10%, the compression ratios are identical, therefore we
can only visualize a single line. In 4(b), we simulated reverberation values of
T60 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 seconds.

than 5%, 10%, 50% for the given noise and reverberation

conditions. In this scenario, the source is located at DOA 45°.

In Fig. 4(a), a white Gaussian noise of −10 dB, 0 dB, 10
dB, 20 dB, 30 dB and 40 dB signal-to-noise ratio per sample

was added to the original signal. Note how the compression

improves as the signal-to-noise ratio (SNR) gets higher. In the

case, of 5% and 10%, the compression ratios are identical,

therefore we can only visualize one line. We used T60 as a

measurement of reverberation, interpreted as the time it takes

a signal to drop by 60dB. In Fig. 4(b), reverberation values of

T60 = {0.1k, k ∈ {1, . . . , 10}} seconds are simulated. In this

case we can see that there is no compression value for which

the error is smaller than 5%, however for 10% and 50% we

achieved high compression ratios for low reverberation values

(up to 0.6), after which the compression decreases to zero.

Fig. 5 illustrates the TDOA relative error and the DOA

relative error for 3 different reverberation levels: T60 =
{0.1, 0.2, 0.3} seconds. We randomly selected 10 different

sounds from the TIMIT dataset, which included speech signals

from 5 men and 5 women (labeled A to J). We simulated

19 different source locations (DOA), from 0° to 180°, with

a step size of 10°. We ran 5 different simulations for each

of these sources and reverberation values. The first row of
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Fig. 5. TDOA relative error and the DOA relative error for 3 different reverberation levels: T60 = {0.1, 0.2, 0.3} seconds. The results are from 10 speech
signals (labelled A to J), at 19 different locations (DOA), from 0°to 180°, with a step size of 10°. We ran 5 different simulations for each of these sources
and reverberation values. The first row shows the TDOA relative error for each DOA. The compression ratio is 40 : 1 for each signal. The second row shows
the DOA localization error per dataset for three different compression ratios: 40 : 1, 45 : 1 and 50 : 1.

Fig. 5, shows the TDOA relative error for each DOA. The

compression ratio is 40 : 1 for each signal. It can be seen

from the plots that for environments with low reverberation,

T60 = 0.1, 0.2 seconds, the TDOA relative error is smaller

than 20% for most DOA, except for 80°and 100°, in which

case the error rises above 40%. The reason for this behavior

is the small values of TDOA at such locations, which makes

its calculation very challenging. The second row of Fig. 5

shows the DOA localization error. The x-axis presents 10

different datasets (labeled A to J). Three different compression

ratios are used: 40 : 1, 45:1 and 50:1. For low reverberation,

T60 = 0.1, 0.2 seconds, the DOA relative error remains less

than 20% for different compression ratios and sources. When

reverberation T60 = 0.3 seconds, the TDOA relative error

increases dramatically for most DOA, especially for 80°and

100°, in which case it is close to 80%. This large TDOA error

has little impact on the DOA estimation, however. Even though

the DOA relative error is above 20% in this case, the error in

general remains less than 40%.

doa error(%) =
‖doa− gt‖

‖gt‖
∗ 100 (4)

IV. DISCUSSION

We found that, by applying computer vision techniques,

Scale-Invariant Feature Transform (SIFT), to the spectrogram

of a speech signal, it is possible to detect keypoints that contain

relevant information about the signal. We were able to use

these keypoints to select the signal samples used to estimate

Time-Difference of Arrival (TDOA) within a reasonable mar-

gin of relative error.

Our mechanism for improving the compression rate is to

use subsampling of the SIFT keypoints in the spectrogram

constructed at each sensor (microphone). Our strategy was to

select the highest energy frequency coefficients, i.e rows of the

spectogram in which the sum of coefficients at key points is

large. This proved to be effective in scenarios in which there

is little noise, as illustrated by Fig. 3b and Fig. 4a.

We ran our algorithm for various source locations and

speech signals. We determined that the highest error in es-

timating the TDOA was caused in positions where the source

was located in front of the microphone array, either at 80°or

100°. This happens because the TDOA is very small for

these positions, which complicates the estimation. For 90°,

where the TDOA is zero, and for 0°and 180°, where the

separation is maximum, the relative error is closer to zero.

On the other hand, given a similar position and the same

noise and reverberation conditions, our algorithm performs

very similarly across the test speech signals we used.

The algorithm’s main drawback is its sensitivity to rever-

beration, as is evidenced in Fig. 4 and Fig. 5. This may

be attributable to SIFT keypoints chosen from reverberations

rather than from the original signal. One strategy to overcome

this problem might be to estimate the probability of the

keypoints being reverberations based on the amplitude of

neighboring keypoints.

Table I shows a comparison between our algorithm and

audio fingerprinting [15] for TDOA estimation. Both algo-



TABLE I
FINGERPRINT VS OURS: TDOA RELATIVE ERROR

Fingerprint Ours

Noise (SNR) Noise (SNR)
Reverb noise-free -5 dB -10 dB noise-free -5 dB -10 dB

0 75.93 (43.80) 140.86 (71.35) 115.38 (55.48) 0.94 (0.68) 114.94 (38.62) 102.77 (12.05)
0.1 77.61 (50.29) 136.34 (69.54) 108.78 (59.71) 0.94 (0.68) 94.92 (29.44) 97.84 (20.87)
0.2 80.10 (40.72) 143.88 (69.69) 115.22 (60.60) 1.33 (0.69) 97.84 (14.91) 99.08 (8.68)
0.4 86.90 (43.88) 147.81 (80.15) 121.74 (63.04) 18.81 (35.14) 107.08 (13.68) 94.61 (12.13)
0.6 89.82 (92.69) 149.26 (76.36) 129.49 (65.35) 36.13 (26.12) 87.06 (31.63) 99.38 (20.24)

rithms were run on 10 different speech signals from the TIMIT

database [20]. A value of noise (from 0 to −10 dB) and

reverberation (from 0 to 0.6) was added to the signal. For

each of these noise and reverberation values, the algorithm

was executed 50 times. The table presents the mean TDOA

relative error with the standard deviation (in brackets). In this

scenario, the source was located at DOA 45°. We used the

implementation of audio fingerprinting presented in [21], in

which the input signal is subsampled to 8kHz to calculate the

spectrogram. The number of sections is 64ms and the overlap

is 32ms. We selected 50 landmarks per signal to perform our

comparison. Table I shows how audio fingerprinting error is

larger than ours for this particular source location and these

particular speech signals.

V. CONCLUSIONS AND FUTURE WORK

In this work, we showed that, by applying a computer

vision approach to the spectrogram of a speech signal, it

was possible to identify samples of the signal allowing for

an estimation of Time-Difference of Arrival (TDOA) within a

reasonable margin of relative error. We tested the robustness of

the proposed technique under different noise and reverberation

conditions using different speech signals and source locations.

We showed that our algorithm can estimate TDOA and the

source location within an acceptable error range when the

compression ratio of the signal is 40 : 1.

In the future, we plan to modify our algorithm by improving

on its robustness to noise and reverberation. We intend to do

this by estimating the probability of keypoints representing

reverberation or not depending on the amplitude of its neigh-

bors. Moreover, we would like to perform experiments in open

spaces in order to evaluate how the high reverberation values

affect our algorithm.
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